
NUMERICAL METHODS FOR PREDICTING

ROLL PRESS POWDER COMPACTION PARAMETERS

Marcin BALICKI
Adviser: Abder MICHRAFY

Ecole Des Mines D'Albi- Carmaux
France

July 15, 2003

Centre Poudres et Procédés
École des Mines d'Albi-Carmaux
Campus Jarlard - 81013 Albi
CT Cédex 09, France.
Téléphone : 05 63 49 31 22
E-mail : poudres@enstimac.fr

NUMERICAL METHODS FOR PREDICTING

ROLL PRESS POWDER COMPACTION PARAMETERS

Abstract
Large numbers of cohesive powders are compacted using a roll press. The

principle of compaction is that particulate materials become a compact when they are
subjected to high pressure.

Experimental work was carried out on pharmaceutical powders [1] to determine
the influence of operating parameters on the roll process compaction. Theses parameters
are determined for a given powder and must be measured again for any other powder. The
subject of this work is to understand how to optimize the process parameters versus the
mechanical behavior of powder and the roll-wall friction.

Rolling theory for granular solids has been continuously investigated for more then
40 years without a successful model representing the phenomenon. In this work, overall
rolling compaction of powders is discussed followed by study of three different theoretical
approaches. First the Johanson model is fully studied with the use of Matlab. Overview of
the other two methods: slab method and ALE finite element method was also included. A
comparison between these models is done to determine the most applicable method for
further study.
Keywords: Powder Roll Compaction, mechanical behavior, friction, finite element
method;

2

Table of Contents
 1 Introduction...4
 2 Rolling Compaction..7

 2.1 System Overview ... 7
 2.2 Desired Solution..9
 2.3 Approach... 10

 3 J.R. Johanson Model Study...12
 3.1 Introduction... 12
 3.2 Pressure Distribution before the Nip Region.. 13
 3.3 Pressure Distribution in the Nip Region... 14
 3.4 Determination of Nip Angle..16
 3.5 Pressure Distribution Calculation... 18
 3.6 Roll Force and Torque Calculation... 18
 3.7 Johanson Model Application Using Matlab..19

 3.7.1 Example Procedure...20
 3.7.2 Powder Database... 24
 3.7.3 Printing results ..25
 3.7.4 Algorithm.. 25

 3.8 System Behavior - Parameter Variation Analysis.. 30
 3.8.1 Nip Angle.. 30
 3.8.2 Maximum pressure.. 32

 3.9 Conclusion...35
 3.10 List of Symbols... 36

 4 Slab Method ...38
 4.1 Introduction... 38
 4.2 Modeling Rolling Compaction with Slab Method ... 38
 4.3 Example Slab Method Formulation ... 41
 4.4 Conclusions... 44
 4.5 List of Symbols... 45

 5 Finite Element Method... 47
 5.1 Introduction... 47
 5.2 Modeling Rolling Compaction with ABAQUS .. 47
 5.3 Lagrange Approach... 48
 5.4 Euler-Lagrange Approach .. 49
 5.5 Conclusion...51

 6 Conclusions...52
 6.1 Process Remarks... 52
 6.2 Powder Characterization... 53
 6.3 Models...54
 6.4 Future Considerations... 54

 7 Acknowledgments...56
 8 References...57
 9 Appendix...59

 9.1 Powder Data.. 59
 9.2 ABAQUS Source Code...59
 9.3 Johanson Model - Matlab Program... 64

3

NUMERICAL METHODS FOR PREDICTING ROLL PRESS POWDER
COMPACTION PARAMETERS

 1 Introduction
Roll compaction of granular solids is an industrial process used to compact a

powder to a product of high homogeneous density and strength. At the end of the 19th

century roll press compaction was initially developed to produce coal briquettes, but
today the process has been widely adopted by mass production industries such as food
processing, metallurgical, chemical, ceramic, semi-conductor as well as pharmaceutical
and even more recently waste recycling [2]. The main principle behind roll press
compaction is that compressible granular solids become compact when they are exposed
to high stresses from applied pressure between two rolls rotating in the opposite
directions.

The advantage of roll-type press application over classical (die) compaction is that
high pressure is continuously exerted on moving granular solids providing an economical,
high volume production of granules [3]. The cost savings come in energy consumption
which is only limited to the power to drive the rolls, feeding system and any hydraulic
adjustment mechanisms. Drying costs are usually minimal. Generally a roller press can
produce tablets five times faster than die compaction press [4]. And in case of heavy
industries such as mineral and fertilizer producers several hundred tons of material per
hour can be processed [5]. However, with increase in speed comes a reduction of quality,
thus making rolling compaction most suitable for products of low unit value, less accurate
weight uniformity and high tolerances for compact imperfections.

Currently, there exists a lack of understanding of roll press powder compaction
technology due to the complexity of the system which results in large scale use of
empirical knowledge rather than scientific theory. While it is possible to achieve optimum
performance using these trial-and-error techniques, the operating costs and time become a
big factor especially within pharmaceutical industry where the materials value and desired
quality are high. Moreover, the use of basic physical data, such as compressibility and
compactibility (ability to cohere into compacts), in formulation work in order to predict

4

Fig. 1.2 Chemical Roll Press
(ALEXANDERWERK AG) [27]

Fig. 1.1 Pharmaceutical Roll Press
(ALEXANDERWERK AG)[27]

compacting behavior of particle matter is limited. An improved theoretical understanding
of powders and the rolling compaction process will enable a more rational approach to
the creation of powder compacts.

The driving force behind research in this field is the desire to formulate methods to
help the operator of rolling compaction to correctly adopt his system to a specific powder
and final product guidelines. Attempts to model the behavior of the system have been
moderately successful. Most of the original work on roll press powder compaction has
been adopted from sheet metal rolling but these cannot simply be transferred to roller
mills especially not to briquetting rollers. There exist three models that are regarded as
best suited for rolling compaction of powder: Johanson model [6-8], Slab method [8-11],
and Finite Element Analysis (FEA) [8,12].

The Johanson is one of the first to attempt to describe the rolling
compaction of powders. His work serves as the basis for beginning research in this field.
Moreover, it can provide essential boundary conditions for other models. The slab method
was originally developed and widely applied to successfully predict the pressure
distribution and roll separating force in sheet metal rolling, then it was applied to metal
powder rolling by Katashinskii [9]. The slab method seems to more completely describe
the behavior of the system in compaction because it allows for inclusions of elements such
as cohesion, friction, roll velocity; as well as their behavior as the powder is compacted.
The FEA approach is the most recent modeling technique used to represent the
deformation process in compaction of powders [13,14]. ABAQUS is one of the widely
used and commercially available finite element analysis packages which provides the
means to represent the behavior of powders. This approach is promising as it allows for
inclusion of many powder parameters but, as with the slab method, this is where the
difficulties arise. All the above require numerical processing with the possible exception
of the slab method. The slab method and FEA methods for powder roll pressing are still
in development stages paralleling the discoveries in powder characterization and process
understanding.

Currently many efforts are placed on collecting experimental roll press data and
characterizations of powders and compacts, which are both necessary for evaluating the
quality of theoretical results [5,10] The general problem is that characteristics of
particulate material are not well definable, difficult to measure and moreover they change
as the powder undergoes compaction. Characterization of the flowability of a particular
material consists of the relationship between shear strength and the compacting stress
acting on it. This information is attained by experiment using a Jenkie shear tester or an
annular shear cell tester [15]. This shear strength is dependent on bulk density which is
determined by the compaction force to which the powder has been subjected. However,
the applied stress in rolling compaction is not on the same order as in the available tester,
therefore their measurement may just be applicable at low compaction pressures. This
method also provides cohesion, which is related to the shear stress required to cause
failure of the compacted to material when is subject to zero normal force. Another
property is the wall friction describing the interaction between the particulate material and
the surface it is in contact with, This property can also be measured by modifying the
above instruments. Although the above tests attempt to measure the tribological
properties, friction is still one of the major unresolved issues in representation and
influence in powders especially while undergoing compaction. It is believed that friction
affects, and is not constant throughout, densification which poses difficulties in

5

postulating a system model. Furthermore, the powder can also be characterized by the
yield stress limit function such as Mohr-Coulomb yield criterion which describes the
relationship between pressure and failure or shearing of the powder. Finally there should
also be a assessment of the final granulate or compacted product either by physio-
chemical or physio-mechanical means [16].

This paper is an initial study giving an overview of rolling compaction, followed
by an extensive study of the Johanson method and a brief overview of the Slab method
and FEA approach. It summarizes existing analysis to simulate and predict system
behavior to gain understanding of issues involved to choose the best approach available to
proceed.

6

 2 Rolling Compaction

 2.1 System Overview

The roll compaction process consists of two counter rotating cylindrical rolls
mounted so that their axes of rotation are parallel (Fig. 2.1). The raw material is delivered
to the space between the rolls by gravity if the a hopper is used, and via a screw feeder or a
combination of both [17]. Friction between material and the roller surface draws in the
powder towards the narrow space separating the rolls (roll gap) where the powder is
submitted to high stresses causing compaction. Depending on the roll surface materials
can be shaped into dense sheets using smooth rolls, molded into strips using corrugated
rolls or formed into a particular geometry matching the cavities recessed in the roll
surface (briquettes) using pocketed rolls.

Feeding systems are the initial steps of the compaction process with great influence
on the compaction results. The powder needs to sufficiently fill the space between the
rolls in a uniform and continues fashion to yield a homogeneous compact. Fine powders
exhibit poor flowability therefore, generally, screw feeders are used for that they allow
greater control of feed pressure than conventional top fed system which is dependent on
gravity and cohesive property of powders. Top feed systems, hoppers, tend to work best
with non cohesive powders with high flowability.

Besides the feed system type, generally, a roll press can be categorized into two
different types: type one that includes rollers that can be rigidly fixed to a particular height
and type two that allows the adjustment of roller force. However, by adjusting the gap size
in roll press of type one, the pressure exerted on the powder by the roll can be controlled.
Conversely, the roll pressure adjustment roller type indirectly adjust the gap size which
results from the equilibrium forces between the powder and the force of the rolls. As for

7

Fig. 2.1Roll Press

 x

 y

POWDER
COMPACT

the width of the roller the diameter/width ratio is determined to minimize density variation
across the roller.

The compaction process can be divided into three zones defined by the behavior of
the material (Fig. 2.2). In the first zone, feeding or entry zone, the densification is solely
due to the rearrangement of particles under relatively small stresses created by the feeding
method (ie. screw feeder). In the second zone, compaction zone, particles fracture and/or
deform plasticly under heavy stress provided by the rolls. This region is believed to began
at a point called the nip angle where the powder no longer slips and begins to stick to the
wall. As a result the compaction zone is also referred to as the Nip Region. The final
zone, the exit zone, is a region of a great decrease in pressure as the compact is ejected
and can expand due to elasticity. As the material is pushed out of the process zone, it picks
up speed and begins to move faster than the roller. This increase in speed causes slip in
the opposite direction before product finally loses contact with the roller. The beginning of
the ejection region is sometimes referred to as a neutral point because it sets the boundary
between the region where the the material moves at the same speed as wall surface it
comes in contact with and the region where the material moves faster than the roll. This
angle is generally observed not to coincide with the point where the gap is the smallest but
rather just prior to it due to minor slip of compact upon ejection [10]. Moreover, the
natural point is also believed to be the point of maximum pressure.

It is important to mention the effects of friction on the system since it is the
principal mechanism by which the powder is pulled into the roll gap. The friction forces
acting on the strip are greater in the region where the roll moves faster that the material.
The difference between the frictional forces in the two regions produces a net frictional
force that pulls the powder into the roll gap. Generally, if the wall friction coefficient is
too low, the material cannot be drawn through the roll press.

8

Fig. 2.2 Zones of process.
 NOT TO SCALE

COMPACTION
ZONE

ENTRY
ZONE

EXIT
ZONE

NEUTRAL
ANGLE

NIP
ANGLE

FEED
PRESSURE

At first sight the rolling compaction may look simple by after all the parameters
involved are analyzed and the powder behavior is discussed the problem contains many
hurdles. The following powder roll compaction parameters can be considered in
developing models and can be divided into the following categories:

Op erating Parameters:
Roll Force, Roll Torque, Roll Velocity, Feed Pressure, Gravity, Inertia

Geometric Parameters:
Roll Diameter, Roll Width, Gap Size

Powder Parameters:
Internal (effective) Angle of Friction, Cohesion, Admissible Stress,
Compressibility, Bulk density

Tribological Parameter:
Friction between powder and roll surface

Powder behavior characterization is one of the major research areas in
pharmaceutical powders. With out good mathematical models for behavior of granular
solids it is very difficult to create correct models of systems that include powders. As
mentioned previously there exist a number of testing techniques for characterization or
powders such as Jenike shear tester. Classical die compaction can also provide some
information, especially for compact classification as well as some insight into the wall
friction effects.

 2.2 Desired Solution
The use of rollers continuously applies high pressure to a material efficiently

producing sheets that can be further processed for storage, granulation, or final product.
The process is used to alter material density, uniformity, flowability, and strength. For
example, to lower cost of handling and transportation the bulk powder density can be
increased as well as to minimize dust (excess 'fines') problems and improve handling [18].
It can also enhance performance characteristics of powder by reducing reactivity,
solubility or permeability (ie. dosing - drug release time) [3]. With the use of briquetting
roll press a required geometry can be achieved. In thermal operations, it can also improve
efficiency of melting, drying or burning. A strip of compacted material can also be
crushed to facilitate further processing in order to produce granules. Compaction can
minimize segregative tendencies and prevent caking during storage. The advantages of
agglomeration in pharmaceutical industry is that it is a dry granulation system with high
volume production of granules and good control of final particle bulk density and flow
properties [3].

As mentioned above, there exist many advantages of rolling compaction of
powders, however, there exist very little scientific methods for designing a successful
press by matching the process parameters to the granular solids to be compacted to get
desired results. The number of variables, lack of good mathematical models and
experimental data greatly effect the design of roller press. Currently, trail-and-error
techniques are widely used to design and calibrate such systems. Thus, when a new
powder is introduced to the roll-press operations many working parameters will change
which will require many hours and materials to find these god compaction settings. For

9

example, one side effect of incorrect setting is delamination or capping caused by
overcompaction. Scaling up pharmaceutical roll compaction process from laboratory to
industrial magnitude can also involve several issues and technologies which will require
more testing and funds. [3] More economical and simpler approach is to predict
relationships between the bulk material, the press dimensions and the operating conditions
by theoretical correlations, which are based on mathematical models and experimental
measurements. For example, a quick approximation using a computer simulation can be
useful to a predict operating parameters for preliminary trials which should be close to the
optimal conditions, requiring only minor trimming by an experienced operator.

Optimal model provides relationships between the material properties, the press
dimensions and operating parameters necessary to apply required pressure to a granular
material to achieve a desired compact density [6,8]. This applied pressure can than be used
to calculate the density or the strength of compact based on experimental data (ie.
indentation tests).

Desired relation for pressure is a function of the following types of parameters:

PRESSURE = ƒ(PROCESS, GEOMETRIC, MATERIAL, TRIBOLOGIC)

 2.3 Approach
In modeling, one attempts to exclude trivial detail and include all essential features

so the model describes the actual problem with sufficient accuracy and is not
unnecessarily complicated. This mathematical model is an idealization, in which
geometry, material properties, loads, and boundary conditions are simplified based on the
analyst's understanding of what features are important and not important in obtaining the
desired results. It is necessary to understand that analytical method is applied to this
mathematical model rather than to the actual physical problem. When the physical
phenomenon is fully understood, only then one can describe or approximate the system by
selected differential equations and boundary conditions. Analytical approach is highly
desired due to an immediate ability of such model to be applied in the field by roll
compactor operators, however the task of finding analytical expressions relating all
parameters of the process is quite difficult.

Oversimplified models tend to give us poor information, but are good starting
points in understanding the problem. The first area of study was the application of sheet
metal rolling theories [21,22]. Since these do not include the same issues and
assumptions when powders are used (mainly material yield criterion), compaction of
metal powders is the area of more interest as investigated by Tundermann or Katashinskii
[9,19-22] A major breakthrough was done by Johanson who postulated a method to
predict the powder behavior in the feeding zone as well as the pressure distribution in the
nip region [6]. He also provided the means to calculate the boundary point between
feeding and nip regions as well as roll force and roll torque. His work even incorporates
application of pocketed rolls. Since this paper is an initial investigation into rolling
compaction of powders the this model was used to gain more understanding of the posed
issues as well as gain a general knowledge about the parameters and their effects. But as
presented, this model is not the most accurate representation of the process, so other
models were briefly looked at.

The slab method seems very promising because it can incorporate ample

10

information about the behavior of powders, much more than the Johanson model. It also
has potential to provide functions which can be used without the help of computers to
rapidly calculate the working parameters. This approach was original applied to sheet
metal and metal powder rolling. At its core is the analysis of the nip region a small slice at
a time. Just as the Johanson model the slab method only works in one plane assuming
there is no out of plane strain. Force equilibrium equations are written for this small slab,
including velocity, gravity, friction, and other factors. The result is a differential equation
that is rewritten in terms of one principal stress by relating and simplifying the two
existing principal stresses using a yield criterion which describes the behavior of powder
under extreme stress that causes it to shear. The complexity of this function seems to
increase with it's ability to correctly represent yield limit and therefore making the
differential equation very difficult to solve without significant simplification or numerical
methods.

The most modern approach, finite element analysis, extensively relies on
computer's ability to perform quick and numerous calculations. It is applied with
mathematical model of system behavior and experimental data for powder behavior.
ABAQUS, a commercial FEA software, has recently been used to simulate classical die
compaction with satisfactory results [13]. Rolling compaction seems more challenging
due to more complex boundary conditions, however a group of scientists has developed
FEM code for ABAQUS that simulates the problem with moderate success [8]. The
advantage of using this approach is that the models can be adjusted to produce improved
solutions through numerical testing and reformulation. Even though the computers today
are powerful, to expend the model to three-dimensions would take much computing time
but not necessarily yield more insight into the process. The FEM modeling technique
appears to be even more interesting than the Slab method due its reputation as one of the
closest real world modeling tools and its ability to incorporate any user defined parameter
behavior with relative ease.

Noteworthy is the fact that friction is believed to play a major role in the process.
All these models use a somewhat simple Mohr-Coulomb friction assumption which seems
to be true for solid materials but is not verified for powders. Furthermore, great emphasis
needs to be placed on the study of powder characterization, since this is central to the
ability of all the theories discussed to correctly model powders behavior in a compaction
environment whether it is in classical compaction or rolling compaction.

Final step would be to expend the chosen model to include material behavior
models in the feeding process, exact pocket geometries in the roll surface and expand the
model to three-dimensions. As these models are developed there needs to be parallel
development in process parameter measurement for theory verification [10].

11

 3 J.R. Johanson Model Study

 3.1 Introduction
Although roll press compaction was predominantly applied in metal sheet or bar

rolling, in the early 1960s a new emphasis was placed on rolling of powder metals or
briquetting granular materials. At that time, information about the design of a roll press
for powders was only of empirical nature. Thus, there existed a need for a mathematical
model describing the relationships between the material properties, the press dimensions
and operating parameters to aid engineers and operators in design and operation of roll
presses for compaction of granular materials. Johanson was one of the first to fill this void
by providing the means to determine the press dimensions and roll forces necessary to
apply the required pressure to a material with specific properties which were attained
experimentally [6].

Johanson model describes the stress function in relation to geometric parameters
and the plastic yield laws of the material undergoing continuous shear deformation
between rolls. His theory is based around the fact that the process can be divided into
distinct zones where the powder behaves in a unique and determinable fashion. These
regions are as follows:

1. Initially the powder is pushed towards the region between the two rolls with a
constant pressure by the use of a screw feeder or gravity-fed hopper. Here the
powder has the bulk material properties and does not change in density due to
gravity.

2. As the powder moves into the gap, it begins to press against the wall of the roll but

12

Fig. 3.1 Roll Press

 x

 y

POWDER

COMPACT

P0

 α
 θ

Nip
Region

 S

 D

not with enough pressure to prevent slipping. In this zone, also called the slip
region, the powder experiences relatively little shear deformation.

3. At some point along the surface of the roll, the powder stops slipping and starts to
travel with the same velocity as the roller. Johanson calls this point Nip Angle, α.

4. The nip angle marks the beginning point of the compaction zone, or the nip region
(Fig. 3.1). Here the powder becomes drawn in between the two rolls which exert
pressure on the powder forcing it to undergo continuous shear deformation until it is
compacted to the thickness equal to the smallest part of the region between the rolls,
the gap size. In this region the powder is assumed to "stick" to the roll surface or
have the same velocity as the roller.

Following the compaction the material enters the exit region where its velocity is
greater than that of the rollers. At this point the compact is believed to expand, although
Johanson notes that this expansion is quite small and assumed to be negligible.

Johanson model can be used to calculate the maximum pressure exerted on the
material being compacted. This pressure peak occurs at the smallest part of the gap (θ =
0). Coupling this information with experimental pressure-density relationship, the final
density of the compact can be predicted. The model also provides means for calculating
roll force and torque.

In his equations, Johanson includes an approximation that describes rolls with
pockets or indentations; However, for the purpose of this paper, the roll surfaces are
assumed to be pocketless. Following list displays assumptions used in the work of
Johanson.

• Material is isotropic, frictional and cohesive.
• Material undergoes continues shear deformation into a solid mass.
• Rollers are rigid.
• Circumferences of the rollers are much larger then the contact area.
• Continuous plain-strain deformation.
• Friction between powder and roll surface is Coulomb friction.
• Weight of material is negligible when the press is force-fed.

 3.2 Pressure Distribution before the Nip Region
Johanson introduced Jenike's model for steady state flow in the theory of roller

press compaction. The Jenike and Shield effective yield criterion (Eq. 3.1) applies to a
region between the rolls where the powder slips against the roll surface. The yield
behavior of the powder is described by the internal friction angle δ.

Eq. 3.1

This region begins where the powder initially makes contact with roll surface, θ0,
at which point the feed pressure P0 is the dominant source of stress (Eq. 3.2) . Notably,

13

sin =
 1− 2

 1 2

one can infer that the mean normal stress (σ = (σ1 + σ2)/2 for any θ) remains constant
for considerable distance after the application of Po, θ0 . Moreover, it increases to an
extremely large value as θ = 0 is approached.

Eq. 3.2

The feed angle θ0 can be computed using the wall friction angle φ and the internal
or effective friction angle δ (Eq. 3.3).

Eq. 3.3

The Jenike-Shield yield criterion (effective yield locus) for the slip region is
represented graphically in Fig. 3.2.

This figure also displays the wall yield locus which describes the friction condition
at the powder-roll surface contact. This friction is normally given as the slope, µ, but can
also be described by the angle φ (tan φ = µ).

The frictional condition for slip along the surface along with the magnitude and
location of feed pressure P0 are sufficient boundary conditions to use the Jenike-Shield
shear criterion to determine the pressure distribution before the nip region (θ > α).

 3.3 Pressure Distribution in the Nip Region
The powder that enters the nip region must be compressed to a final hight equal to

the dimension of the roll gap. Johanson applies conservation of mass concept represented
by Eq. 3.4 where the change in density is proportional to the change in volume.

Eq. 3.4

14

Fig. 3.2 Internal and Wall friction loci

Sh
ea

r
St

re
ss

,

Effe
cti

ve Y
iel

d Locu
s

Wall Yield Locus

Normal Stress, σ σ2=P0 σ1 σ

 τ

 δ

 φ 2θ
0

2ν

Α

 0=
P0

1−sin 

0=
arcsin sin

sin 
2

/=V /V 

This means that powder with a particular mass trapped in a slice under the surface
of arc-length ∆L has a volume Vα. As this same mass travels towards the gap it must be
compressed to a slice of volume Vθ that is under the same sized arc-length segment ∆L
(Fig. 3.3). Thus the only the volume and therefore the density changes as a finite amount
of material moves through the roll gap.

Pressure-Density relationship is experimentally attained using a linear compression
test in a tablet pressing device and is presented as the log of density as a function of log
pressure:

This relationship is often referred to as the Tablet Material Law represented by the
following equation:

Eq. 3.5

The exponent K represents compressibility which is a material property and is
constant for a powder with a given moisture content, temperature, and time of
compaction. It describes the degree of volume reduction due to applied pressure. Due to
linear behavior, attaining the compressibility is simply done by plotting a few points from
pressure - density data on a log scale and calculating the slope of the line. The inverse of
this derivative is the compressibility K.

15

Fig. 3.4 Pressure vs Density

L
og

 B
ul

k
D

e n
si

ty
 (

γ
)

 Log Pressure (σ)

Κ

1
1

2

Fig. 3.3 Volume vs Mass

∆L

∆L

Mα

Mθ

Mass Mα = Mass Mθ

Vα Vθ

1

 2
= 1

2
K

It is important to mention that the words pressure and stress are interchangeable
due the fact that there is only one constitutive pressure source in each region. For example,
in the nip region stress is primarily due to the roll pressure thus σ = Proll.

From Eq. 3.4 and Eq. 3.5 the following relationship between stress at any θ, σθ,
and stress at the nip angle, σα is derived:

Eq. 3.6

The volume between an segment of arc-length ∆L, roll diameter, D and roll width,
W is given by :

Eq. 3.7

By applying this definition to Eq. 3.6 the the pressure distribution relationship
between the rolls in the nip region can be obtained, provided the nip angle α is known
(Eq. 3.8.) As mentioned previously, since major principal stress in the nip region is much
grater then the minor principal stress, an assumption is made that σ is equal to the pressure
exerted on the powder only by the roll.

Eq. 3.8

 3.4 Determination of Nip Angle
Johanson postulates that there must exist a point of transition where the powder

stops to slip along the roll surface and begins to travel with the same velocity as the rolls.
Johanson is able to mathematically describe the pressure distribution for the system where
only slip occurs and where the no slip occurs. Central to his idea is the assumption that the
gradient of these two pressure distributions is equal at a point: Nip Angle α. Figure 3.5
demonstrates this idea. Solid curve represents the powder undergoing continuous slip and
the dashed curve represents the powder traveling with the same velocity as the rollers;
thus the intersection of two curves in gives the angular position, α , or the beginning of
the nip region. Note that the nip region is from angular position of 0 to angular position α,
and the zone where the powder slips along the roll surface is between the angle θ and the
point of where pressure gradient of slip state equals 0. This point is also the point of
application of feed pressure.

16

 =/ K= V /V 
K

V =[SD1−cos  cos ]LW

 =[1S /D−coscos
1S /D−cos cos]

K

The gradient of pressure for the assumption of slip along the roll surface (Eq. 3.9)
is derived by using the effective yield-locus equation (Eq. 3.1) combined with equilibrium
conditions that form a solvable system of hyperbolic-type equations. However, the
discussion of this method of calculation is beyond the scope of this paper.

Eq. 3.9

Therefore, by equating Eq. 3.9 and pressure gradient equation of the case where
no slip along the surface occurs (Eq. 3.10), combined with the assumption that not only
the gradients but also the pressures at that point are equal, σslip= σstick, and solving for θ
will yield the nip angle.

Eq. 3.10

The variables used in the above are derived from the yield and wall loci (Fig. 3.2)
and are represented by the following equations:

Eq. 3.11

Eq. 3.12

Eq. 3.13

17

Fig. 3.5 Determination of Nip Angle

NIP
REGION

SLIP
REGION

Feed Angle θ
0

Application of P0

Nip Angle α

d
dx

=
4 /2−−  tan

D
2 [1S /D−cos ][cot A−U −cot AU ]

d
dx

=
K 2cos−1−S /D  tan

D
2 1S /D−cos  cos

A=/2
2

U=/4−/2

=
−arcsin sin

sin −

2

 3.5 Pressure Distribution Calculation
The procedure for calculating the pressure distribution in the nip region is as

follows: First, the nip angle is determined using the aforementioned method. The nip
region pressure distribution equation (Eq. 3.8) requires a value of pressure at the point of
transition, σα. This value is calculated by numerically solving the differential equation for
pressure gradient in the slip region (Eq. 3.9) with initial condition of σθ = σ0 , where σ0 is
the mean normal stress at the position of application of P0 (Eq. 3.2.) Figure 3.6
demonstrates pressure distributions for two powders, AvicelPH101 and Lactose
Monohydrate in a roll press with roll diameter of 130 mm, gap size of 1mm and initial
feed pressure of .06 Mpa. [see Appendix for data]

 3.6 Roll Force and Torque Calculation
According to Johnson the pressure distribution is not very useful in design of a roll

press process, therefore he provides means of calculating roll force and roll torque. When
the pressure distribution in the nip region is known the roll force can be calculated
numerically using equation 3.14 where the the Pm is the maximum pressure exerted by the
rolls on the material and F is represented by equation 3.15. The nip region is the limit of
integrations because the pressure there are much greater than those in entrance and exit
regions. Figure 3.7 demonstrates the effects of roll gap hight variation on roll force for two
different powders .

Eq. 3.14

Eq. 3.15

18

Fig. 3.6 Pressure Distribution in Nip Region

RF=PmWDF/2

F=∫=0

= [S /D
1S /D−cos  cos ]

K

cos d 

In a similar manner roll torque can be calculated using the following equations:

Eq. 3.16

Eq. 3.17

 3.7 Johanson Model Application Using Matlab
Matlab mathematics software package was used to create an application

implementing Johanson Model of rolling compaction of powder (Fig. 3.9). Matlab was
used to numerically solve the non-linear simultaneous and also differential equations
discussed in previous sections as well provided an intuitive graphical user interface to
demonstrate the capabilities of Johanson Model. Moreover, the program provides a

19

Fig. 3.7 Roll Force vs Roll Gap

Fig. 3.8 Roll Torque vs Roll Gap

T =∫=0

= [S /D
1S /D−cos  cos]

K

sin 2 d 

RQ=PmWD2 T /8

means of creating and altering databases of powder properties and process parameters
which allows for quick analysis of parameter variation on powder compaction. The
program was written with modularity in mind to improve portability and efficiency. The
source code contains extensive comments to aid in future development.

 3.7.1 Example Procedure

The following figure displays the graphical user interface (GUI) which consists of
system parameters, database functionality, plot selection and plot variable range (Fig.
3.10).

20

Fig. 3.9 Screen Shot

The GUI is run in Matlab environment (version 6.1.0.450 Release 12.1) by
opening and running the 'nip.m' file. This file contains the main portion of the project:
user input logic, algorithms and GUI manipulation.

After the GUI loads the user can immediately begin to experiment with the default
values for AvicelPH102 loaded into input areas (Fig. 3.11).

The parameters variables are as follows:

21

Fig. 3.11 User Input - Parameters

Fig. 3.10 User Interface

µ = roll surface - powder friction coefficient
δ = internal friction angle of powder
K= Compressibility constant
S= Gap size - smallest distance between rolls
D= Diameter of Rolls
P0 =initial feed pressure (perpendicular to major principal stress)
RW= roll width

These values can be replaced with any desirable numeric value. In case of a
typographical mistake (entering a combination of alpha and numeric characters) a warning
window will pop up. It is also advisable to pay attention to the Matlab command line for
system and program messages especially if extreme values are entered by the user. The
next step is to choose the type of relationship desired from the plot pop up menu. (Fig.
3.12)

When a plot is chosen the user input fields adjust their visibility according to the
required parameters for the particular operation. In the case of the Maximum Pressure vs
Roll Gap, Gap size input box is hidden because it is the invariant and Roll Width is not
used in this calculation (Fig. 3.11).

After choosing the appropriate parameter values the user should adjust the range of
the invariant which will limit the time of calculation and display only the desired results
(Fig. 3.13). The range variables are :

rMin = minimum limit
rMax = maximum limit

22

Fig. 3.12 Plot Menu

To began the process the PLOT button should be pressed. At this point the
program collects user inputs and runs the algorithm displaying the results in a separate
Matlab Figure window which can be edited, saved or printed (Fig. 3.14).

If another plot of the same type is desired the results can be plotted on the same
axes as the last plot for comparison (Fig. 3.15).

To achieve this effect, after altering the parameters, the button labeled 'Plot On the
Same Axes' should be pressed displaying 'ON' (Fig. 3.16).

23

Fig. 3.13 Variable Limits

Fig. 3.14 Result

Fig. 3.15 Two Results

This effectively finds a figure containing the same type of plot and displays the
new data on its axes. The program also creates data labels for each curve displaying all the
respective parameters entered by the user. If multiple curves are on the same axes, these
labels may need some user interaction to clarify which data label belongs to which curve.

 3.7.2 Powder Database
To improve the utility of the software a database functionality was implemented.

The software allows the user to create a database of all input variables: powder properties
and process parameters. Using the provided interface this information can be altered,
saved and loaded at anytime (Fig. 3.17).

The database data is stored in Matlab variable format file with a suffix of .pdb ;
However, there may be a need for powder database use outside of the Matlab
environment, thus an export function was created that creates a ASCII text version (.txt)
of the currently opened database. This data file is space delimited as in the following
example:

Lactose75 0.18 39 7.75 1 130 0.1 50
AvicelPH102 0.38 42 4.75 1 130 0.1 50
Avicel2 0.32 28 4.31 1 130 0.1 50

The fields correspond to parameters in the following fashion:
Name FricCoefficient InternalFrictAngle Compressibility RollGap RollDia P0 RollWidth

Load database file function is located under the menu heading FILE (Fig. 3.18).
The program automatically filters the current directory for files ending with a .pdb. After
the .pdb database file is opened, loading a particular powder into the user input boxes is
done by highlighting the desired powder from the powder database list and clicking on
LOAD (Fig. 3.17). If include process parameters option is checked the powder properties
as well as system properties will be loaded into their respective input boxes.

24

Fig. 3.16 Plot Location Button

Fig. 3.17 Powder Database

To add a the current configuration of user inputs for powder parameters type in or
alter the current NAME located in a red box above the LOAD button and click ADD. This
creates an instance of the powder NAME in the powder list. This procedure also saves the
process parameters along with powder parameters.

To remove the powder select the NAME of the powder from the powder list and
click REMOVE. This change is only permanently affected after the current powder
database is saved. Otherwise reloading the powder database from the FILE menu restores
the list to the last saved state.

Furthermore , another database utility stems from the fact that Matlab naturally
allows the user to edit, save and print Figures, providing another method for archiving
records of experimentation.

 3.7.3 Printing results
Matlab print preview function was chosen as a preferred method to print the state

of the user interface because it allows the user to rotate, align and fill the page with the
GUI. Moreover each figure/axes is fully editable allowing for adding text, lines, arrows
and changing colors, fonts, line types, etc. This figures can also be saved for later editing,
exported as an image (tiff or jpg) file or just printed.

 3.7.4 Algorithm
This section describes the internal workings of the program by using pressure

distribution calculation as the example. This example is probably the most useful in the
fact that the roll press operator is able to adjust the gap size The following flow chart
summarizes the internal program procedure from the time the user presses the PLOT
button to the final display of the results.

25

Fig. 3.18 File Menu

26

Fig. 3.19 Example Program Flow Chart

Desired Relationship
 i.e. Maximum Pressure vs Gap Size

Collect and convert user input to usable form
Calculate constants

Range of analysis variable: 0.5 - 2.5 mm

USER INPUT

ALGORITHM

For each increment of gap size
from rMin to rMax do the following

Call getUserVarInput(handles) function to :
Convert degrees to radiants

Converrt coeficcient ofwallfriction to wall friction angle
Calculate constants - A, u, ν (Eq 3.11, Eq 3.12, Eq 3.13)

Numerically solve for nip angle (α)

Call getAplha(handles) to do the following:
Using fsolve, solve two simultaneous equations

(Eq 3.9 , Eq. 3.10) for θ which represents the point of
 intersection of the two curves or the angle α.

Numerically solve differential equation for
pressure distribution in the slip region

The differential quation for the pressure gradient during
slip (Eq. 3.9) is solved using direct numerical integration

solver (ODE45) which returns array of results

Calculate initial stress and application point

Store it along with the corresponding gap size The data is stored in a double array for plotting

DISPLAY

Check if the Plot in the Same Figure
is Checked

YES
Select the last figure

of same type

NO
Create a new figure

Plot results data

Label the figure

X axis represents gap size
Y axis represents maximum pressure

All user input needs to be numeric
User input can come from the database module

Increment size is calculated by dividing the range
of Gap Size by number of desired increments, ie 40.

Powder Properties:
K, δ

Geometric Properties:
 S,D,W

Wall Friction: u
Feed Pressure:

P
0

Calculate the maximum pressure using pressure
distibution equation in the nip region

Calculate the stress at angle α

With the values from above, from the pressure
distribution equation (Eq. 3.8))calculate the pressure at

 angular position 0 .Maximum Pressure exists at this point.

User inpt parameters are converted to text
and positioned on the axes by calculating

X and Y axis data ranges

From the results of the solver extract the value of stress
 at angle = α.

This takes adventage of matlab's ability to find
 graphical objects

Initial Stress (Eq. 3.2) , Point of application (Eq. 3.3)

First step after the user has initiated the procedure by pressing the PLOT button is
the collection of user input data. The program queries all the input fields but only uses the
ones required by the particular relationship chosen and in this case Maximum Pressure vs
Gap Size. The user inputs are then converted to usable format required by the model, for
example angles need to be in radiants and coefficient of friction needs to be converted to
angular format. The following function was written for this purpose.
Note: '%' denotes a comment

function [] = getUserVarInput(handles)
%set global variables used in functions.
global d2r r2d D S W d K v u RW Po rMin rMax
%get all the variables
%angle variables are converted to radiants
d2r=pi/180; % conversion factor degrees into radiants
r2d=180/pi; % conversion factor radiants into degrees

%%%%%%%%
% S=Gap size(between rolls)
% D=Diameter of Rolls
% K=Compressibility constant
% d=delta - internal friction angle of powder
% Po=initial pressure at the entrance (perpendicular to major principal stress
% W=phi - wall (roll-powder) friction angle

% (attained from friction coefficient tan(phi)=mu)
% v=cute angle between the tangent to the roll surface and the direction of
% major principal stress which can be calculated using W and d
% RW=roll width
% rMin = min range value
% rMax = max range value
%%%%%%%
% The next functions grab the string input variables and convert them to
% double precision numbers
S = str2double(get(handles.varS,'String'));
D = str2double(get(handles.varD,'String'));
K = str2double(get(handles.varK,'String'));
d = str2double(get(handles.vard,'String'))*d2r;
Po = str2double(get(handles.varPo,'String'));
RW=str2double(get(handles.varRW,'String'));
W=str2double(get(handles.varW,'String'));
%w at this moment is the friction coefficient so take atan to get the wall

 %friction angle in radiants:
W=atan(W);
% calculate v which is used all equations
u=(pi/4)-(d/2);
v=(pi-asin(sin(W)/sin(d)) -W)/2;
rMin = str2double(get(handles.rMin,'String'));
rMax = str2double(get(handles.rMax,'String'));

The next step is to calculate the initial stress on the powder at the beginning of the
application of the feed pressure as defined by Eq. 3.2 and its location defined by Eq. 3.3.

%initial condition
so=[Po/(1-sin(d))];
%point of application of feed pressure (equivalent to Eq. 3.3)
x0=(pi/2)-v

At this point the algorithm has all the necessary data to began the application of the

27

Johanson Model to calculate the pressure distribution at different gap sizes. The following
code is the main loop iterating through 40 different gap sizes. The iterator size is
calculated by dividing by 40 the difference between invariant range values, rMax and
rMin. This iterator quantity may be different for other calculations (plot types) to attain the
best balance between calculation time and result resolution.

xspan=[x0,0]; %integration limits from Po application to 0
i=1; %iterator for array indexing
x=0; %maximum pressure is at 0
step=(rMax-rMin)/40; %Calculate the iterator size
for M=rMin:step:rMax

 S=M; %Current Gap size
 a=getAplha(handles); %calculate the α
 sol=ode45(@slipODE,sspan,so); %solve the slip differential equation

% using Runga-Kutta and
%initial condition of so at point x0

 sa=deval(sol,a); %from solution find stress value at position α
 N(i,1)=S; %save the current gap size

%using the initial stress at α calculate the
 %maximum pressure (x=0) and save it

 N(i,2)=sa*((1+S/D-cos(a)*cos(a))/(1+S/D-cos(x)*cos(x)))^K;
 i=i+1; %increment the array index

 end

The getAplha function accepts the argument handles which is passed for formality;
it contains information about the GUI, although it is not used in this function. The
required variables are simply passed from function to function by their global definition.
And since each function refreshes all the variables there is no problem with unwanted
variable values. The fsolve equation solver from the Matlab Optimization Toolbox finds a
root (zero) of a system of nonlinear equations. In this case the two nonlinear equations are
the pressure gradient with slip (Eq. 3.9) and the pressure gradient without slip (Eq. 3.10).
It returns the point of the intersection of the curves representing the equations which is the
angle α in radiants.

function a=getAplha(handles)
global d2r r2d D S W d K v u RW Po rMin rMax
InitialGuess = [.1;.1]; %this value seems to work well
Options = optimset('Display','off'); %do not display progress
% call fsolve which returns a vectory of which the first component is the

 % angle α and the second part is the pressure gradient value
XY = fsolve(@SlipStickFun, InitialGuess, Options);
a=XY(1);

The fsolve method is based on the nonlinear least squares algorithm. The
advantage of using a least squares method is that if the system of equations is never zero
due to small inaccuracies, or because it just does not have a zero, the algorithm still
returns a point where the residual is small. However, if the Jacobian of the system is
singular, the algorithm may converge to a point that is not a solution of the system of
equations. More specifically, by default fsolve chooses the large-scale optimization
algorithm which is a subspace trust region method and is based on the interior-reflective
Newton method. Each iteration involves the approximate solution of a large linear system
using the method of preconditioned conjugate gradients [23].

The above mentioned equations are contained in a function called SlipStickFun in

28

a SlipStickFun.m file.
function F=SlipStickFun(V)
global d2r r2dD S D W d K v u
x=V(1); y=V(2);
F=[y-(4.*(pi/2-x-v).*tan(d))./((D/2.*(1+S/D-cos(x))).*(cot(((x+v+pi/2)/2)-u)-

cot(((x+v+pi/2)/2)+u)));
y-(K.*(2.*cos(x)-1-S/D).*tan(x))./((D/2).*((1+S/D-cos(x)).*cos(x)))];

The equations are stored in a vector where any multiplication, division or power
operations need to have '.' in front of them to allow for element by element matrix
operation. Without this symbol the matrix multiplication would involve the inner
products between rows and columns.

It is important to note that the stress at θ (σθ) is equal in both equations at point of
intersection and therefore can be omitted. The pressure gradient values are represented by
y while angular position θ is represented by x.

After the angle α is attained the value is used in calculating the pressure at such
angle by solving the differential equation of the pressure distribution with slip (Eq. 3.9.)
The initial condition is σ0 which is the mean normal stress at the position of application of
P0 (Eq. 3.2.) Matlab's ode45 numerical differential equation solver was applied It is
based on an explicit Runge-Kutta formula, the Dormand-Prince pair. It is a one-step solver
in computing y(tn), it needs only the solution at the immediately preceding time point, y(tn-

1). In general, ode45 is the best function to apply as a "first try" for most problems [23].
The ode45 requires a argument in a function format similar to the SlipStickFun.m file.

function dsdx=slipODE(s,x)
global d2r r2d S D B d K v u
dsdx=[(4.*s.*(pi/2-x-v).*tan(d))./((D/2.*(1+S/D-cos(x))).*(cot(((x+v+pi/2)/2)-u)-

cot(((x+v+pi/2)/2)+u)))];

After the algorithm finishes the results need to be plotted. First the program calls
the newFigure function which was created to check whether the user desires to have the
data plotted on the same axes. The function searches all the figures open for a figure with
the name of the current type of plot; in this case to 'Maximum Pressure Vs Roll Gap'. If
such figure exists it is chosen to be the current figure. If more than one exist the last one
created is chosen. However if no match is found a new figure with the name of the desired
type is created and set to current. Following the data is plotted by using the plot command:

%call the figure choosing function.
figure(newFigure(handles,'Maximum Pressure Vs Roll Gap'));
plotA=plot(N(:,1),N(:,2));

The following code labels the axes, and uses the text function to display the user
input data:

title('Maximum Pressure Vs Roll Gap');
xlabel('Roll Gap [mm]');
ylabel('Maximum Pressure [MPa]');
xData = get(plotA,'XData'); % Get the plotted data
yData = get(plotA,'YData');
TPosX=(max(xData))*0.6; % returns the max value in x direction
TPosY=(max(yData))*0.8; % returns the max value in y direction
Tsp=TPosY*.07; % creates a variable for vertical text spacing

29

%print user variables on the graph
text(TPosX,TPosY-TSp,0, ['D= ',num2str(D), ' mm']);
text(TPosX,TPosY-TSp*2,0, ['Po= ',num2str(Po), ' MPa']);
text(TPosX,TPosY-TSp*3,0, ['K= ',num2str(K)]);
text(TPosX,TPosY-TSp*4,0, ['\delta= ',num2str(d*r2d), ' Deg']);
text(TPosX,TPosY-TSp*5,0, ['\mu= ',num2str(tan(W))]);

Figure 3.6 demonstrates pressure distributions for two powders, AvicelPH102 with
lubricated wall and Lactose in a roll press with roll diameter of 130.0 mm, gap size of 1.0
mm and initial feed pressure of 1.0 Mpa. Similar methodology was used to represent
variations of pressures based on other parameters.

 3.8 System Behavior - Parameter Variation Analysis
The compactibility of a granular solid is defined as the ability to be transformed

into a compact of a certain mechanical strength. Thus, it is an essential and fundamental
property of a tablet mass and a determining factor for successful tablet production.
Compactibility is normally assessed by the relationship between compact strength and a
process variable, usually the maximum force or pressure applied on the powder during the
compaction; Although, other process related factors can effect the mechanical strength of
compacted powder [24].

The model provides reasonably accurate values of basic operating parameters such
as roll force and roll torque for granular solids that exhibit high coefficient of friction
against the roll surface and middle and high values of compressibility constant. Very
compressible materials (low K values) and high compaction pressures (ie. 100 Mpa) yield
results that do not correlate with experimental data; with errors over 50 % [8].

Although powder properties such as internal friction angle and compressibility are
not independent of each other, their effects on the system can be used to predict system's
behavior for similar powders. Wherever possible experimentally gathered powder
properties were used in the Johanson Model to compare the effects of parameter variation.
The experimental data was collected using classical die compaction for compressibility
and annular shear tester for internal friction and wall friction [25].

 3.8.1 Nip Angle
The nip angle is an important boundary information for other models for rolling

compaction of powders. It defines one of the limits for the region where most of the
compaction is believed to take place. Therefore it is important to become familiar with the
process and powder parameters influence on the behavior of this angle. Although it is very
difficult to measure the nip angle, literature exists and states that the model provides a
good estimate of the nip angle. The results are in agreement with experimental data
especially for gravity fed roller presses [8].

Generally, for a set of parameters, if only internal friction angle increases the nip
angle increases and as a result more powder is drawn into the space between the rolls
yielding a higher density compact requiring greater roll pressure, Fig. 3.20.

30

Similar effect, but not nearly as strong, is observed by increasing the coefficient of
friction between the roll wall and powder as shown in Fig. 3.21.

In Fig. 3.22, it is observed that the nip angle decreases significantly for materials

with low compressibility, or high K value. As for very compressible materials, according
to Johanson there may not exist a region in which slip occurs.

31

Fig. 3.21 Nip Angle vs Wall friction

Fig. 3.20 Nip Angle vs Internal Friction

Surprisingly, the nip angle does not significantly depend on the magnitude of

dimensional parameters, roll gap and roll diameter. As demonstrated in the following
figure, the nip angle fluctuates only a few tens of a degree while the press undergoes a
considerable change in roll gap to roll diameter ratio.

 3.8.2 Maximum pressure
The pressure distributions for different powders have similarly shaped curves over

the time of roll contact with maximum pressure appearing in the narrowest part of the gap;
angular position 0, Fig. 3.6. Therefore, one can assume that maximum pressure is a good
representation of the general trend of pressure distribution in the nip region. It is also the
important factor in predicting final compact properties.

Maximum pressure is directly affected by the feed pressure [1]. This is especially
evident in a system that requires relatively low compacting force, where the change of
feed pressure significantly increases the pressure exerted on the powder, as displayed in

32

Fig. 3.23 Nip Angle vs Roll Gap

Fig. 3.22 Nip Angle vs Compressibility

Fig. 3.24.

Generally, the feed pressure for a roll press with rollers of 130 mm diameter is in
the range of 0.04-0.06 Mpa [1]. The pressure results in that date seem to be reasonable. As
for the instance when the feed pressure is taken below 0.0275 MPa, the resulting
maximum pressure (Gap=1mm) becomes negative. This phenomenon may be related to
the fact that the powder needs to be fed into the roll gap with a pressure above a certain
limit, otherwise compaction will not occur.

Fig. 3.25 displays effects of gap size parameter which according to Johanson is the
most influential press dimension in determining the pressure in the nip region, while the
roll diameter has much less of an effect. As the gap size becomes smaller the pressure
rises exponentially to very extreme values which will unlikely occur in reality due to
buildup of powder prior to the nip region (overfeeding). On the other hand, if the gap is
too large too little powder may enter the nip region where poor compaction is expected.

Using the information from the above graph the roll press operator is able to
predict the behavior of the powder. If he or she is using a roll press type that allows for

33

Fig. 3.25 Maximum Pressure vs. Roll Gap Size

Fig. 3.24 Maximum Pressure vs. Feed Pressure

adjusting the gap size the desired compact density can be achieved by adjusting the
separation height of the rigid rollers until the optimum pressure required to compact the
powder is achieved. As mentioned before this pressure is obtained experimentally using
tablet compaction instruments. In the case of the other type of press which is equipped
with a hydraulic roll force adjustment (lacks direct gap size adjustment) the same graph
can be used to deduct the gap size which may be utilized in verification of process
calibration.

Fig. 3.26 shows the effects of friction between roll surface and powder. Rough
rolls increase the force that drags the granular solid into the region of compaction, and as a
result of Johanson's assumption of mass conservation, a denser compact is expected
resulting from an increase in maximum pressure. Occasionally there is a problem with
material gluing to the roll surface resulting in unwanted film and negatively influencing
press performance. In this case the roll surface may need a mechanical cleaner, or a
lubricant directly applied to the wall surface. The other solution is to add a lubricant such
as Magnesium Stearate to the bulk powder in concentrations of 0.5 - 1.0 percent.

The curve in the above plot reverses its trend between coefficient values of 0.4 and
0.5. This is a model phenomenon which can be explained via the relationship between rate
of change of force and the rate of change of contact surface area. As wall friction increases
the nip angle increases (Fig. 3.21). The nip angle is one of the boundary points of the
contact surface; the other ones are the neutral angle 0 and the roll width which stay
constant for this simulation. Therefore, if the nip angle increases the contact surface
increases and if the rate of this area increase is greater than the rate of increase of roll
force, the pressure (Force/Area) decreases.

The next graph (Fig. 3.27) displays the effects of compressibility factor variation
on maximum pressure as well as the effect of increasing the internal angle of friction.

34

Fig. 3.26 Maximum Pressure vs. Wall Friction Coefficient

 3.9 Conclusion
Compactibility is often assessed by the relationship between compact strength and

maximum pressure applied to the powder during compaction. In many cases, due to
simplifications made while modeling powder behavior resulted in the model's inability to
represent the system correctly. However, the most important result of the Johanson model
is that it provides the value of Nip Angle, which is often used as a boundary condition for
other analytical and numerical models.

It is clear that a wide variation in press output exist when different materials are
used in the same compaction process configuration. The most influential press dimension
in determining the maximum pressure is the roll gap (S). Moreover, increasing powder-
roll friction increases the effectiveness of the process. As for the nip angle, if the roll gap-
roll diameter ration (S/D) is much less than 1, the nip angle seems to only depend on the
following material properties: compressibility constant (K), effective angle of friction (δ),
and wall friction (µ). One can further deduce that the feed pressure has no effect on the nip
angle at all, however in reality this is probably not the case.

The discrepancies between Johanson method and experimental results may be due
to the use of simple material material yield criterion for both slip and no slip regions,
especially at the point of transition where high stress values are permitted and the bulk
material law remains unchanged [7]. The other disadvantage of the model is that it only
uses the mean shear stress (σ = (σ1 + σ2)/2), but it is often desirable to work with the
principal stresses for more correct stress distribution. Moreover, mass conservation
assumption is rather simple and it does not accurately describe the heterogeneous flow of
material undergoing compaction in the nip region [1].

The rate at which a load is applied to material can affect the results obtained; in
rolling compaction the roller speed is directly linked to this phenomenon. In his method,
Johanson does not consider velocity of the rollers which has been demonstrated to affect
the compaction process [1]. However, the variation of roll velocity relative to the feed
pressure (screw feeder velocity) is tolerable if it is within a certain range where the strip of
compact produced exhibits enough cohesion and mechanical strength [5]. Furthermore,

35

Fig. 3.27 Maximum Pressure vs. Material Compressibility

the relationship between these two parameters creates an envelope of possible values
which will have minor effects on the compaction as long as compact is created.

Moreover, the model does not account for the change of the friction coefficient of
wall surface-powder interaction which is directly dependent on the change of the density
that varies greatly as the powder becomes compacted [8,25] . It also doesn't incorporate
the effects of powder cohesion and its change with density.

In conclusion, the Johanson model is considered the corner stone of the study of
rolling compaction of powders. However, due to aforementioned assumptions and
simplifications it does not provide sufficient simulation of the process. Nonetheless, it is
one of the first models to allow engineers to analyze the process and allow an operator to
predict initial step parameters in a iterative roll press calibration procedure.

 3.10 List of Symbols
D - roll diameter
F - force factor
K - compressibility constant for granular solid
Pm - vertical pressure at angular position 0
P0 - horizontal feed pressure
RF - roll separating force
RT - roll torque for one roll
S - roll gap
T - torque factor

Vθ - volume between arc length segments ∆L at position θ

Vα - volume position at θ = α

Vm - volume position at θ = 0
W - roll width

α - nip angle

γ - bulk density of granular solid

γθ - bulk density at θ

γα - bulk density at θ = α

γm - bulk density at θ = 0

∆L - element of arc length

δ - internal (effective) angle of friction

φ - wall friction angle (roll surface - powder) tan φ = µ

µ - coefficient of friction (roll surface - powder) arc tan µ = φ

ν - acute angle between direction of σ1 and tangent to roll surface

36

σ - mean normal stress in granular solid

σ1 - major principal stress (y)

σ2 - minor principal stress (x)

σ0 - mean normal stress at a point of application of P0

σα - stress at nip angle

θ - angular position

θ0 - feed angle

37

 4 Slab Method

 4.1 Introduction
The slab method was developed by Siebel and von Karment for sheet metal

forming [8]. It has then been adopted to rolling compaction of metal powder rolling by
Katashinskii [9]. The main difference between the different applications of slab method to
roll compaction is the type of material yield criterion is implemented which in case of
sheet metal is the Von Mises yield criterion.

The objective of the slab method is to provide an analytical model for powder
compaction which takes into account powder behavior and equilibrium equations
representing forces exerted on a the powder in the nip region. The advantage of this model
is that it provides information about the two principal stresses unlike the Johanson model
which only describes the mean stress. It also has potential to include characteristics of
powders such as cohesion and global friction between particles. However, as more
complex powder behavior characteristics are implemented the ability to analytically solve
the resulting differential equation decreases considerably. If possible such analytical
relationship would provide an operator the pressure exerted on the powder which
compared with experimental data can provide predictable compact properties such as
density and strength.

 4.2 Modeling Rolling Compaction with Slab Method

Although the rolling process is carried out at low speeds, it is natural to assume

38

Fig. 4.1 Slab Method

σ
f

 x

 y

POWDER

 NOT TO SCALE

COMPACT

 α
 θ

 D

 dθ

ω

σ
0

dx

ω

h0
hf

that static analysis model is a suitable approach. The compaction zone is divided into
differentially small slices bounded at top by the roller surfaces (Fig. 4.2). These
boundaries can be described as straight lines tangent to the roller contours due to strip's
small width, dx. If the forces of inertia acting on the material being formed are ignored,
only the stresses acting on the four sides of the trapezoidal slab need to be taken into
account. At the material-surface contact point friction exists which creates shear stress, τ.
From the stresses, the forces are attained by multiplying the direct and tangential
components by their respective surface areas. Than by resolving the forces into horizontal
and vertical forces equilibrium equations can be written.

The general problem includes the following aspects:
Process Parameters :

Pressure of feeder (P0), Angular Velocity of Rollers (ω)

Roller Pressure (P), Nip Angle (α)
Geometric Parameters :

Diameter (D), Gap size (hf)
Powder Parameters :

Cohesion (β), Internal friction angle (δ),

Relative Density (ρ =Apparent/True), Yield function
Tribologic Parameters :

Powder - roll surface friction definition (µ)

These elements can also be categorized into groups of unknown and given data:
Unknown parameters :

Stress in x and y (σx, σy) , ρ , P as a function of position

39

Fig. 4.2 Free Body Diagram of Slab (Entry)

θ

θ

PdS

τdS

σx(x + dx) (h + dh) σxh

dx
h

+
 d

h

h

Given Parameters :

β , µ, α, initial stress at entrance (P0=σ0), Hf, Yield Function, ω, D

The desired function is

The general approach is to define the assumptions, write down the constitutive
equilibrium equations, apply boundary conditions and yield criterion to formulate a
governing differential equation.
The assumption for the following example are:

• Rollers are rigid.
• Plane sections remain plane as they pass through the rolls (plane strain).
• Stresses are distributed uniformly within slab elements.
• Friction force in the contact area follows Coulomb's law.
• The circumference of the roller is much larger than the contact area.
• Roll pressure is equal to the principal stress in the y direction

The boundary conditions include nip angle which can be obtained from Johanson
model or measured experimentally; However, either of these experimental methods are
currently not very verifiable. At the entrance the θ = α and h = h0 while at exit θ = 0 and h
= hf. As for pressure, the major source of stress is the pressure (P0) produced by the feeder
from the entry end and by the compact from the exit end.

The friction condition between the powder and roll surface is assumed to be
constant for sheet metal rolling analysis. However this assumption is not believed to be
correct as internal friction, cohesion and wall friction properties are dependent on the
density of granular material. A key issue exists here because wall friction affects the
pressure exerted on the powder and yield (densification) is a function of pressure. And as
mentioned before friction is a function of density making the wall friction directly related
to the pressure and vice versa.

The yield criterion is a major element of modeling compaction as it is the
definitive element by which we classify materials. There exist a number of different
criterion that represent yield limits of materials. The following few have been used in
metal and powder research:

• Von Mises (used for solids)

Elliptical in nature along the x axis, but for dense materials it approaches

40

Eq. 4.1Desired Relationship Equation

P=f {P
0
, ω, D, h

f
, Powder(β, δ, Yield Function), µ}

Eq. 4.2 Von Mises Yield Criterion
 x

2 y
2− x y=Y 2

straight lines. This model is predominantly used in modeling of metallic
materials because they exhibit little change in volume.

• Kuhn - Downey (used for porous media)

 Takes in account the change in density. Slab method implementation by
Dec [8]paper uses this yield function which has traditionally been applied
to metal powder modeling. Note that as ν goes to 0.5 and ρ increases to 1
this model's behavior approaches Von Mises model.

• Drucker - Prager/Cap model (used for porous media)

This model is an extension of Drucker-Prager yield function for admissible
stresses. It consists of three equations each used in different states of the
material as demonstrated by the three surfaces in Fig. 4.3. For this reason
this model is very difficult to implement in the Slab method. Although it
may be possible to use along with numerical integration. Drucker-Prager
Cap model describes a cohesive powder more precisely than the previous
models.

 4.3 Example Slab Method Formulation
Using the above assumptions the following calculation procedure can be used to

begin the initial formulation of the slab method as applied to rolling compaction. Due to
the plain strain and roller diameter assumptions the maximum principle stress is equal to
roll pressure for small angles (σy = P). The following procedure is applied to the nip
region.

Horizontal forces:

41

Eq. 4.3 Kuhn - Downey Yield Criterion

Eq. 4.4 Poisson ratio as a function of density.

Fig. 4.3 Drucker-Prager Cap model.[13]

 x
2 y

2−2x y=Y 2



hdhx xdx −h xx≈

Adding the horizontal components of the roll pressure and shear the following expression
is derived for the equilibrium forces in the x direction.

With the following geometric relations:

a substitution for contact surface dS is made to yield:

and simplifying :

Now with the assumption of Coulomb friction between the powder and the roll :

The expression can be further simplified

42

Fig. 4.4 Geometric Relations

dS= dx / cos θ

dx

dx tan θ
θ

Eq. 4.5 Coulomb Friction Relation

≈ x x hdh xdx hdh− xxh

≈ x x hx x dh xdx hx dx dh− xxh

≈ x
dh
dx


dx

dx
h

d x

dx
dh

zero

≈ x
dh
dx

h
d x

dx

≈
dx h 

dx

∑ Fx=0⇒
d x h 

dx
−PdS sin−dS cos

⇒
d  x h

dx
−P dx

cos 
sin − dx

cos
cos 

⇒
d  x h

dx
−P dx tan − dx

=P

d  x h
dx

=P dx tan−P dx

d  x h
dx

=P tan−dx

and finally since the slab is symmetric about the x axis the equation representing the
balance of forces is:

Now similarly the vertical force equalibrum expression is derived :

substitute the surface dS in terms of q and simplify:

use the coulomb friction relation to write the expression in terms of P and θ :

and by factoring out the roll pressure we get:

Expanding the equationg to include the whole slab (symmetry about the x axis) yields:

For small angles P y is approximately equal to σ y:

Rearranging the equation gives the expression for roll pressure in the y direction:

Combining equilibrium equations (Eq. 4.6 and Eq. 4.7) :

and simplifying yields the force equilibrium expression for the whole slab:

43

Eq. 4.6 Force Equilibrium Equation in X direction

Eq. 4.7 Force Equilibrium Equation in Y direction

d  x h
dx

=2 Ptan− dx

∑ Fy=0⇒PdS cos dS sin −Py

⇒P dx
cos

cos  
dx

cos
sin−Py

⇒P dxdx tan −P y

⇒P dxP dx tan −P y

P y=P1 tandx

Py=2P1 tandx

 y=2P1 tan  dx

P=
 y

21 tandx

d  x h
dx

=2tan  − dx
 y

21 tandx

dx in terms of angle θ:

substituting for dx yields:

The above equation needs one more step to convert it to usable form of one unknown
parameter (σ). Yield equation provides this required relationship between σ x and σ y.
For this there are a number of options varying in complexity and level of correctness for a
given material.

Moreover for further investigation the equation relating hight and angle θ is :

and for small angles this expression can be approximated to:

The resulting differential equation combined with boundary conditions may or may
not be solvable by hand therefore a Runga- Kutta or other numerical methods can be used.

 4.4 Conclusions
The slab method displays much promise to solve this half-century old problem of

rolling powder compaction. However, the method does not provide information about the
tapped powder zone prior to nip region. It also assumes that the boundary condition
information for the nip angle is available. There exists very little evidence for
experimental measurement of the nip angle as well as verified application of the Johanson
method of attaining this data. The proper characterization of friction is central to the
success of simulation procedures, especially in powder compaction process. It is the main
mechanism by which the powder undergoes compaction. If the friction between the roller
and the powder is too low, even with the help of a screw feeder, the powder will not be
drawn through the roll stand. It was shown by Michrafy that density variations in
compacts made via the granular material compaction are mainly attributed to friction [14].
The friction phenomenon in powder compaction emanates mainly from two sources: inter-
particle friction and powder-die wall friction. These two powder properties are directly
related to density. As a powder is continuously shearing due to applied pressure its
tribologic properties change and as a result effect the transformation of pressure from roll
through friction. Iterative solving may be necessary to apply experimental data to the
model.

Most recent work applying the slab method to powder compaction is done by

44

Eq. 4.8 Force Equilibrium Equation for Slab

d  x h
dx

=
 y tan −
1 tan

dx=R cos d 

d  x h
d 

= y Rcos  
 tan −
1 tan 

h=h f R 1−cos 

h=h f R 2

Schonert and Sander [10]. Unique to their approach is use of the normal to shear stress
relation (transmission coefficient) in a powder. This coefficient serves as a substitute for a
yield criterion by representing the relative amount of pressure transmitted from the σx to
σy.

The major hope of using the slab method is that it may provide a mathematical
formula that can be used without the need of a computer, perhaps only a four function
calculator.

 4.5 List of Symbols
dx - slab width
dS - slab surface in contact with roll wall
D - roll diameter
P0 - feed pressure in the x direction
Px - pressure in the x direction
Py - pressure in the y direction
P - roll pressure
R - roll radius
h - height of powder section
dh - change in height from slab to slab
hf - height of compact equal to roll gap height
h0 - height of powder at start of compaction

Y - yield

α - nip angle

β - cohesion

δ - internal (effective) angle of friction

φ - wall friction angle (roll surface - powder) tan φ = µ

µ - coefficient of friction (roll surface - powder) arc tan µ = φ

ν - Poisson ratio

ρ - bulk density of granular solid

σx - major principal stress in x direction

σy - major principal stress in y direction

σ0 - horizontal stress at the beginning of compaction

σf - horizontal stress at the end of compaction

σα - stress at nip angle

θ - angular position

45

dθ - small change in angular position corresponding to dS

τ - shear stress

ω - roll velocity

46

 5 Finite Element Method

 5.1 Introduction
There exist numerous types of finite methods available, the most prominent are:
FEM - Finite Element Method for Continuum Media (solids)
FDM - Finite Difference Method (differential equation solver)
CVM - Control Volume Method = CFD Control Fluid Dynamics = FDM with

integration on the control value.
While all these may be great modeling methods each one is suitable for a particular

application. The FEM suits the problem at hand and is implemented in the ABAQUS
commercial FEA package. [12] The finite element method seems to be the most versatile
approach because it takes account of substantial information about geometry, powder
behavior, and frictional conditions. For this fact nearly realistic computer experiments are
possible.

ABAQUS is composed of two different packages: ABAQUS/Explicit and
ABAQUS/Standard (implicit). The main difference between these two procedures is that
explicit methods require a small time increment size that depends solely on the highest
natural frequencies of the model and is independent of the type and duration of loading.
Simulations generally take on the order of 10,000 to 1,000,000 increments, but the
computational cost per increment is relatively small. Implicit methods do not place an
inherent limitation on the time increment size; increment size is generally determined
from accuracy and convergence considerations. Implicit simulations typically take orders
of magnitude fewer increments than explicit simulations. However, since a global set of
equations must be solved in each increment, the cost per increment of an implicit method
is far greater than that of an explicit method [26]. Although, some equations can't be
solved by explicit integration and thus requiring the use of implicit method.

The explicit dynamics method was originally developed to analyze high-speed
dynamic events that can be extremely costly to analyze using implicit programs. The
explicit dynamics procedure is often used for quasi-static simulations involving complex
non-linear effects found in complex contact conditions. The explicit central difference
method is used to integrate the equations in time; therefore discrete mass matrix used in
the equilibrium equations plays a crucial role in both computational efficiency and
accuracy. Quazi-static analysis incorporates rate-independent material behavior where
time is not very important. The mass scaling is used to adjust the mass of the model
artificially to reduce the solution time. ABAQUS provides automatic mass scaling but it is
often more desirable to choose one by the user, although it is more like art than science.

 5.2 Modeling Rolling Compaction with ABAQUS
The ABAQUS file is an instructions code providing all the necessary information

for the program to create the model and run the simulation.
• Node definition
• Element definition
• Surface definition

47

• Assign element properties (rigid body, material, etc)
• Define material properties
• Define boundary conditions
• Define contact surfaces
• Define step properties (number of increments, dynamic explicit, etc)
• Define output results (all, strain, velocity, reaction force, etc)

General application in ABAQUS starts with the definition of the objects involved.
The mesh is first defined, and since the press is symmetric about the x axis, symmetry is
assumed to decrease design and computation time. The elements are created from four
nodes in a systematic fashion. Generally for a two dimensional model, they are plane-
strain continuum elements with reduced integrations (CPE4R). Following, is the definition
of the material and then the boundary conditions (roll is defined as a rigid surface,
dynamic explicit, velocity of roll, friction etc.)

The last step is to define the desired data and acquisition frequency as well as the
time limit of the procedure.

Two approaches may be used to solve the rolling compaction; method based on the
Lagrange approach and the another which is based on the Lagrange-Euler technique. Some
information is given in the following.

 5.3 Lagrange Approach
A pure Lagrange method is based on the fact that the elements in a mesh represent

the powder. The mesh moves as if it was the powder, and as the powder undergoes stress
and strain the elements directly represent the result. The example of this technique
assumes that the material is formed into a slab and given a velocity. This block then
travels into the roll gap where it is compressed. Because the complexities of the powder
behavior, this technique was applied to a thick metal sheet.

To prevent the effects of impact from the initial contact between powder and roll,
the linear velocity of the powder is taken equal to the associated velocity of the roll.

48

Fig. 5.1 Lagrangian Mesh (Initial Contact Point)

Following figure is the result of simulation of rolling of a thick metal sheet. It
represents irreversible strains in the sheet after a steady state is reached.

This approach is not very applicable to powder compaction due to its inability to
address severe mesh distortion exhibited by highly compressible materials. The following
approach was investigated.

 5.4 Euler-Lagrange Approach

Adaptive meshing is an ABAQUS/Explicit tool that makes it possible to maintain
high-quality mesh through out an analysis, even when large deformations occur by
allowing the mesh to move independently of the material [12]. This technique combines
the features of the often used pure Lagrangian analysis in which the mesh represents the
material and Eulerian analysis in which the mesh is fixed spatially while the material
flows through it. This method is often referred to as the Arbitrary Lagrangian-Eulerian
(ALE) analysis is extensively used in fluid flow analysis. Central to this method is the fact

49

Fig. 5.3 Eulerian Mesh

Fig. 5.2 Sheet Metal Rolling - Steady State Reached

that the mash is remapped when necessary to prevent the analysis from terminating as a
result of severe mesh distortion.

Initially, the mesh is created representing the approximate space to be occupied by
the powder traveling between the rolls. As the powder becomes compacted topologically
similar mesh throughout the analysis is maintained: no elements are created or destroyed.
However, the element shape and position may be altered.

The top surface of the mesh is set to move or slide freely (Lagrangian boundary)
while the left and right surfaces are defined as inflow and outflow (Eulerian boundaries) to
allow the material to flow through the mesh. The bottom of the mesh is set to be a
symmetric boundary. The mesh follows the contour of the rolls inside the nip region as
illustrated by the next figure.

A few investigative simulations were conducted. The next figure is an example of
a failed run due to extreme distortion of the mesh causing the program to terminate
prematurely. The initial point of powder-roll contact (nip angle) is the node farthest away
from the gap that the roll surface is in contact with. This contact point may shift during the
simulation.

When the model is not configured correctly it is clear that the simulation is not
correct. However with investment of time and correct input data this approach may be
successful.

50

Fig. 5.4 Contact Area

 5.5 Conclusion
These form of approach seems to be the most promising but not very practical.

Sadder Kadiri, in his work on die compaction, has successfully utilized
ABAQUS/Standard with Drucker-Prager / Cap powder behavior model.[25] It is believed
that the same result can be attained with the explicit method.

According to literature [8], finite element method offers most attractive approach
because incorporates complex information about geometry, powder behavior, and
tribologic conditions. Although it requires expensive computer and software resources, it
has promising ability to closely model powder rolling compaction, and as a result improve
in process and equipment optimizing that may outweigh the costs of initial investment.

More experimental data is necessary to tweak the FEM model to match the real
results. After the simulation is correct for a particular powder, a new powder should be
introduced and examined in the same FEM model to see if the overall settings are good to
determine which parameters are powder specific. Theoretically similar results may be
attained for different combinations of input factors.

Once again the ability of this method to predict the operational parameters of a roll
press heavily relies on the input information provided by the user from experimental data.
The material behavior is at the center of this problem.

51

Fig. 5.5 Failed Simulation Attempt (Material = Powder)

 6 Conclusions
This report is an initial investigation into the nature of rolling compaction of

powders in the theoretical research area. The Johanson model was utilized to gain general
understanding of parameters involved and their behavior with system alteration. Two
other approaches were investigated briefly to determine the direction of theoretical roll
compaction research conducted at the Centre Poudres et Procédés at the Ecole des Mines
d'Albi-Carmaux. It has been concluded that the finite element method is the most
promising approach at the moment. Nevertheless, the slab method investigation should
not be abandoned as it has potential to be more useful in the industrial setting. On a
further note, these methods need to be explored in parallel with powder characterization
studies considering that particular materials are at the center of the problematic issues in
modeling their compaction in a roll press.

 6.1 Process Remarks
The following are process remarks taken from experiments with Johanson model

and literature. Initial feeding pressure has a definite effect on the final stress on the
powder, moreover the applied stress heterogeneity is depended on the heterogeneity of
feed pressure. For example, when using a screw feeder local pressure fluctuations are
observed in the feeding zone corresponding to the period of the screw in sinusoidal
fashion [3,5]. Moreover, fine powders have poor dearation ability especially while using
pressure to feed the press. The air is squeezed between the particles and has difficulties to
leave the mass of the powder being compacted which negatively influences feeding and
therefore compaction exhibited by variation of density and strength of compact. Moreover
there exists a danger of compact delamination or even explosion due to highly pressurized
air bubbles escaping the compact in the exit region. In such case vacuum dearation system
is suggested to possibility reduce these problems. Furthermore, there may exist a problem
of powder leakage, where the loose material exits the space between the rolls. This
uncompacted powder needs to be recycled for the process to be efficient [5].

As for process variables the gap size seems to be the most influential process
parameter for it greatly changes the pressure exerted on the powder. Wall friction is
another parameter that could be altered to adjust the compaction pressure by the use of
lubricants or roughing of rolls. Roll velocity variation effects the roller minimally relative
to the feed pressure as long as the compact is produced. With a constant feed pressure, for
low roller speeds overcompaction occurs while for high speeds no strip is formed [1].

It is also important to mention that flow of powder in the nip region is not straight
forward. The particles move at different speeds depending on their position in the
compaction zone. This fact is often omitted by assumption made to simplify this flow to a
constant movement of particles relative to the x axis [5].

According to Michrafy the density affects the wall friction as the powder is being
compacted [14]. This friction is a function of density which is dependent on the pressing
force which, in fact, is partially transmitted by the same contact friction. This circular
relationship may be difficult to represent in a analytical approach and is more suitable for
a numerical method. Moreover, this wall friction variation is not very easy to measure or
represent. At the moment the behavior of this parameter is not verifiable in rolling
compaction but seems to decrease in die compaction. In general, under densification
internal friction angle increases and cohesion increases and wall friction decreases.

52

The other major issue in the rolling compaction area is the unavailability of
accurate and thorough force/strain measurements techniques. For example the
measurement of the pressure at the surface of the roll, or the pressure distribution along
the axis of rotation are two major goals of rolling compaction research teams. Shear
stresses on the wall surface are also quite difficult to measure due to residue buildup and
heterogeneous feed pressure distribution. Generally, a hydraulic system is used to
maintain the bearing blocks of a movable roller; such system is often susceptible to
oscillations and irregularities complicating measurement acquisition and disrupting
compact homogeneity. Not very well understood part of the process is the feeding zone
where the stresses exerted by the rollers is very small, (ie. less than 0.1 MPa) and is not
measurable by piezoelectric transducers placed on the roll surface [5]. Another parameter
which is yet to be measured experimentally is the nip angle which is often used as a
boundary condition. With out these quantitative results the accuracy of the modeling
technique is only compared to the final compact and does not give us much knowledge
about the phenomenon of powder behavior undergoing compaction in a roll press.

 6.2 Powder Characterization
Before rolling compaction model is created a few issues need to be analyzed. One

is the fact that currently there exist limited ability in defining the behavior of powders. All
the models mentioned in this paper use many mechanical property theories of Jenike
regarding the flow of bulk solids which are fairly good at the beginning of compaction and
change significantly in compression zone especially when the material is closer to the
solid state. However, this is all that is available at the moment and is applied as a result.

Internal angle of friction, bulk density and real density (using helium) are the few
parameters believed to be fairly constant. Other parameters such as compressibility,
contact friction are not so easily definable thus providing much of the headaches for the
research community. In terms of internal friction and particle cohesion, there exist two
major methods of attaining this information: Jenike shear tester and the annular ring shear
tester. A preference is given the utilization of the ring (annular) cell shear tester rather
than Jenike shear tester due its reliability and ease of use. As for measuring the friction
coefficient between the powder and a contact surface both of the above mentioned tests
can altered to take such data. It is difficult to estimate the quality of the information
provided by these experiments for powder-wall surface behavior, but they are the only
available quantitive source.

Another issue is the shear yield limit representation. There exists a number of
different yield criterion but their usage varies due to their complexity and assumptions
taken. Drucker-Prager/Cap model appears to be the most extensive in describing yield
behavior of powder[13]. The data for this model is collected from diametrical
compression, simple compression and compaction in an instrumental die [8].

The other end of the process, the final compact characterization, is also
problematic. Unlike a tablet compact, the hardness testing is not easy for a slab of
compact because a wide area with heterogeneous strength and density is observed whether
a gravity feed hopper or a screw feeder are used. For this reason the compact needs to be
tested along many points along the width and the length of the sheet but the most optimum
positions are yet to be studied. Furthermore, the choice of hardness testing method is not
clear either because standard tableting tensile strength test is generally no applicable, so a
measurement such as the indentation test could be employed. Similarly, there exists very

53

little evidence for high quality density measurement.

 6.3 Models
Rolling compaction of powders is not a simple problem as it was theoretically

studied for over fort years and is still one of the major research topics in powders.
Johanson was one of the first investigators into rolling compaction of non-metallic
granular media; his work serves as the cornerstone of research in powder compaction
field. It was chosen as the initial step in this study for its simplicity and recognition. In
previous studies the model has been found moderately successful with good results for
powders exhibiting low compressibility [11]. The model also gives insight into the general
trends in parameter variation which can be used in estimation of minor system
adjustments or comparison of compaction effects of same family powders.

The slab method is more complicated than the Johanson model because it can
include more mechanical properties of the powder (cohesion, wall friction function, etc)
and analyzes two principle stresses present. Currently for the method to be successful
numerical differential equation solver is used due to high complexity of the governing
equation. Schonert was able to successfully apply the slab method but his work only
presents results for a very hard powder with low compressibility [10]. The difficulty of
this approach arise in the application of yield criterion and number of factors included
such as cohesion, friction, gravity, and inertia.

ABAQUS software is rather expensive and generally has a large learning curve. It
may be a bit cumbersome to use it in an industrial setting, therefor a custom FEA program
specific to the case of rolling compaction would be of best interest. However, this step is
only reachable after a known general FEM modeling package is applied successfully to the
problem. The advantage for creation of such tool is that for almost every powder a new
mesh and new powder behavior need to be defined and automating or improving the
current methods is desirable.

 6.4 Future Considerations
Besides the Johanson's limited success, none of the above mentioned models have

investigated the granular solid behavior in the region where the powder is mainly
compacted by the feed pressure just prior to the compaction zone. The correct
representation of powder in the this feeding zone needs to be investigated further because
the results may improve the boundary conditions required for the models studied.

All the models discussed here assume Mohr-Coulomb friction which is quite a
reliable method for classifying friction between solid materials but has not been studied
much for granular solids. Wall friction in powders - solid interactions is believed to be
related to internal friction, perhaps this type of approach could be beneficial in postulating
boundary information.

Another technique that has not been discussed yet is the use of particle simulation
where computer model of each powder particle in a bulk is created and accounted for
through out compaction. This concept is rather difficult to achieve at the moment due to
limitations of computing systems and little knowledge of the micro interactions between
particles. This approach would incorporate the heterogeneous flow of particles in the nip
region. This approach may be the leading method of simulating powder but that may not
happen for ten or twenty years.

54

The models discussed may converge some day to simulate reality very closely;
however, this will largely depend on our abilities to more precisely characterize granular
solids.

55

 7 Acknowledgments
Thank you to Abder Michrafy for being a great mentor and a friend. For shearing his
mathematics knowledge and scientific research and presentation techniques.
Thank you to Sadder Kadiri for answering my long and speculative questions in the
field of powder compaction and providing experimental data for my program.
Thank you to Stefan Haas for the long discussions about powders as well as
philosophizing about social aspects of Europe and US.
Thanks to David Leach(Gary) for being a great mate, a source of comic relief and a
motivating gym partner.
Thank you to Maxime for being a dear friend and a great neighbor with an oven.
Thank you to Maryse for being the most energetic and helpful administrative person I
ever met.

56

 8 References
[1] O. Simon, P. Guigon, Interaction between Feeding and Compaction During Lactose
Compaction in a Laboratory Roll Press, PhD Thesis, Université de Technologie de
Compiègne, (2000)
[2] O. Simon, P. Guigon “Correlation between powder-packing properties and roll press
compact heterogeneity.” Powder Technology 130 (2003) 257-264
[3] P. Sheskey, G. Sackett, L. Maher, K. Lentz, S. Tolle, J. Polli “Roll Compaction
Granulation of a Controlled-Release Matrix Tablet Formulation Containing HPMC”
Pharmaceutical Technology (1999)
[4] M.J. Rhodes, Principles of Powder Technology, John Wiley & Sons Ltd. (1990) p.
220
[5] P. Guigon, O. Simon “Roll press design-influence of force feed systems on
compaction.” Powder Technology 130 (2003) 41-48
[6] J.R. Johnson, “A rolling theory for granular solids,” ASME, Journal of Applied
Mechanics 32 : series E. No. 4, (1965)
[7] K. Sommer, G. Hauser, “Flow and compression properties of feed solids roll-type
presses and extrusion press.” Powder Technology 130 (2003) 272 -276
[8] R.T. Dec, A. Zavaliangos, J. C. Cunningham, “Comparison of various methods of
powder compaction in roller press,” Powder Technology 4642 (2002)
[9] V.P. Katashinskii, “Analytical determination of specific pressure during the rolling of
metal powders,” Poroshkovaya Metallurgiya (1996) 1-10
[10] K. Schonert , U. Sander, “Shear stresses and material slip in high pressure roller
mills.” Powder Technology 122 (2002) 136 -144
[11] Mise en forme des materials , calcul/elasticitè – French textbook.
[12] Abaqus 6.2 Manual
[13] A. Michrafy, D. Ringenbacher, P. Tchoreloff “Modeling the compaction behaviour
of powders: application to pharmaceutical powders.” Powder Technology 127 (2002) 257-
266
[14] A. Michrafy, S.Kadiri, J. Dodds “Wall friction and its effects on the density
distribution in the compaction of pharmaceutical excipients.” To be published in
Chemical Engineering Research and Design.
[15] M.J. Rhodes, Principles of Powder Technology, John Wiley & Sons Ltd. (1990) p.
100
[16] M.J. Rhodes, Principles of Powder Technology, John Wiley & Sons Ltd. (1990) p.
195
[17] K. Schonert , U. Sander, “Operational conditions of a screw-feeder-equipped high-
pressure roller mill.” Powder Technology 105 (1999) 282 -287
[18] M.J. Rhodes, Principles of Powder Technology, John Wiley & Sons Ltd. (1990) p.
215
[19] J.H. Tundermann, A.R.E. Singer “The flow of iron powder during roll compaction ”
Powder Metallurgy, (1968) Vol. 11, No. 22
[20] J.H. Tundermann, A.R.E. Singer “Deformation and densification during the rolling
of metal powders,” Powder Metallurgy, (1969) Vol. 12, No. 23
[21] G.Y. Tzou, “Theoretical study on the cold sandwich sheet rolling considering
Coulomb friction.” Yung Ta Institute of Technology (2001)
[22] H. Gao, S.C. Ramalingam; G.C. Barber, G. Chen “Analysis of symmetrical cold
rolling with varying coefficients of friction.” Journal of Materials Processing Technology
124 (2002) 178-182

57

[23] Matlab Online Manual version 6.1.0.450 Release 12.1
[24] G. Alderborn and C. Nystrom, Pharmaceutical Powder Compaction Technology,
Marcel Dekker, Inc.(1996) p. 247
[25] S. Kadiri's ongoing thesis work on classical die compaction.
[26] S.P. Wang, S. Choudhry and T.B. Werheimer “Comparison between the static
implicit and dynamic explicit methods for EFM simulation of sheet forming process.”
MARC Analysis Research Corporation, Palo Alto, CA., USA (1997)
[27] www.alexanderwerk.com - Manufacturer of small industrial machines and apparatus

58

 9 Appendix

 9.1 Powder Data
Avicel - Microcrystaline Cellulose
Wall Lubricant - Magnesium Stearate placed on the powder contact surface

Avicel
PH102

Avicel PH102
+ Lubricant

Avicel
PH101

Lactose *
Monohydrate

Particle Size 90 mm 90 mm 50 mm 75 mm

Bulk Density 0.31 g/cm3 0.31 g/cm3 0.29 g/cm3 0.55 g/cm3

Internal Friction Angle 42° 42° 45° 39°

Wall Friction Coefficient µ
(Angle)

 0.28
(15.6°)

0.19
(11.4°)

0.29
(16.3°)

0.24
(13.5°)

Compressibility - K 4.75 4.75 3.64 7.7-8.0

* Taken from O. Simon thesis. [1]
All other data was taken from Kadiri's thesis work.[25]
Wall friction coefficient greatly depends on the type of material used in the rollers and
is approximated to be the given values from available data.
Values for feed pressure are dependent on a powder.
For example, typical values, for feed pressure for lactose are are 0.04 - 0.06 Mpa [1]

 for a press with roll diameter of 130 mm

 9.2 ABAQUS Source Code
The following figure represents node numbering used in creation of elements.

The next figure is a representation of dimension of the model.

59

Fig. 9.1 Node Numbers

-0.125 -0.1 -0.075 -0.05 -0.025 0 0.025 0.05 0.075 0.1 0.125

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

311

310

309

314

312

313

315

304

303

302

307

305

306

308

297

296

295

300

298

299

301

290

289

288

293

291

292

294

283

282

281

286

284

285

287

276

275

274

279

277

278

280

269

268

271

272

273

267

270

262

261

260

265

263

264

266

255

254

253

258

256

257

259

248

247

246

251

249

250

252

242

241

243

244

245

239

240

237

238

234

233

232

235

236

227

226

225

230

228

229

231

220

219

218

223

221

222

224

214

213

215

216

217

211

212

208

209

210

205

204

206

207

199

198

197

202

200

201

203

192

191

190

195

193

194

196

187

186

188

189

183

184

185

181

182

177

176

178

179

180

175

174

173

172

171

170

169

168

167

166

165

164

163

162

161

160

159

158

157

156

155

154

153

152

151

150

149

148

147

146

145

144

143

142

141

140

139

138

137

136

135

134

133

132

131

130

129

128

127

126

125

124

123

122

121

120

119

118

117

116

115

114

113

112

111

110

109

108

107

106

101

100

99

103

104

102

105

93

94

92

98

97

95

96

86

87

85

91

90

88

89

78

79

81

80

84

82

83

73

72

71

75

76

74

77

65

66

64

70

69

67

68

58

59

57

63

62

60

61

51

52

50

56

55

53

54

44

43

47

48

45

49

46

37

38

36

42

41

39

40

30

31

29

35

34

32

33

23

24

22

28

27

25

26

16

17

15

21

20

18

19

9

10

8

14

13

11

12

2

3

1

7

6

4

5

X [mm]

Y
 [

m
m

]

60

Fig. 9.2 Nip Angle

The source code for the latest
ABAQUS/Explicit with ALE method. This
example requires a node definition file from
the included CD.

rpc2D.inp

*** Rolling Compactions of Powders
*** Ecole Des Mines D'Albi
*** May 2003
*** Marcin Balicki - balicki@enstimac.fr
**

*** Description:
*** First model using euler method - created by Abder Michrafy
*** Altered the definition of the roll
**

*** Notes :
*** Don't use blank lines,especially when the previous line ends
in ','
*HEADING
ADAPTIVE MESHING EXAMPLE
FLAT ROLLING - ADAPTIVE MESH, EULERIAN NODES AT
INLET AND OUTLET
Units - N, m
**

**The *RESTART, WRITE option is used to write the model
definition
**and state to the state (job-name.abq) and part (.prt) files.
** These files, which will for convenience be referred to as the
** "restart file," allow an analysis to be completed up to a certain
** point in a particular run and restarted and continued in a
** subsequent run with the *RESTART, READ option.
*RESTART,W,N=20
**W - restart file is to be written during the analysis.
**N - number of intervals during the step at which the *RESTART
output
** states are to be written.
**

**call the node definition file
*INCLUDE, INPUT=node2d.inp
**

**Master element
*ELEMENT, TYPE=CPE4R
1, 1, 2, 9, 8
** element #, a,b,c,d
** abcd represent the node numbers making up the 4 node element
**TYPE - defines the shape and behavior of the element
**Continuum elements begin with the letter "C."
**"PE," a plane strain element;
**"4R," quadrilateral
**

*ELGEN, ELSET=BAR
1,44,7,1,6,1,44
**This option is used to generate elements incrementally.
** the element set name is BAR
**1. Master element #,
**2. Number of elements to be defined in the first row generated.
**3. Increment in node numbers of corresponding nodes from
element to element
** in the row.
**4. Increment in element numbers in the row. The default is 1.
**If necessary, copy this newly created master row to define a
layer of

** elements.
**5. Number of rows to be defined, including the master row. The
default is 1.
**6. Increment in node numbers of corresponding nodes from row
to row.
**7. Increment in element numbers of corresponding elements
from row to row.
**If necessary, copy this newly created master layer to define a
block of
** elements.
**8. Number of layers to be defined, including the master layer.
The
** default is 1.
**9. Increment in node numbers of corresponding nodes from
layer to layer.
**10. Increment in element numbers of corresponding elements
from layer
** to layer.
**Repeat this data line as often as necessary. Each line will
generate
** N1 ´ N2 ´ N3 elements,
**where N1 is the number of elements in a row, N2 is the number
of rows
** in a layer, and N3 is the number of layers.
**

**This option is used to define properties of solid (continuum)
elements,
**infinite elements, and truss elements.
*SOLID SECTION,ELSET=BAR,MATERIAL=POUDRE
5.E-2,
**The argument depends on element type
**ie. if plane strain is used the argument is the element thickness
**
**

*** MATERIAL DEFINITION

**Definition of material used in the SOLID SECTION
*MATERIAL,NAME=C15
**these can change with respect to field variables (ie temperature)
*ELASTIC
1.5E11,.3
**Young's Modulus, Poisson's ratio
**
**
**Plasticity given must be true stress and true strain
**use ABAQUS manual to convert from nominal stress and strain.
**usually found in material guides.
*PLASTIC
**Yield Stress, plastic strain
168.72E06,0
219.33E06,0.1
272.02E06,0.2
308.53E06,0.3
337.37E06,0.4
361.58E06,0.5
382.65E06,0.6
401.42E06,0.7
418.42E06,0.8
434.01E06,0.9
448.45E06,1.0
**
*DENSITY
7.85E3,
** Example of druker prager cap model for material
** SOIL STRATA D1 (700 ft - 1100 ft)
** ---------------------------------
*MATERIAL,NAME=D1
*ELASTIC
 47700.,.17
*CAP PLASTICITY
 200.,36.9,0.33,0.02,0.,1.

61

*CAP HARDENING
 400.,.0
 600.,.02
 800.,.05
 900.,.09
**CAP CREEP, LAW=SINGHM,
MECHANISM=CONSOLIDATION
** 2.2e-7, 2.1e-2, 1.0, 1.0, 50.0
** 3.5e-5, 2.1e-2, 1.0, 1.0, 212.0
***PERMEABILITY,SPECIFIC=3.07e-2
** 16.8,,0
** 32.0,,250
*EXPANSION
 0.32E-05,
*DENSITY
7.85E3,
**

*MATERIAL, NAME=POUDRE
** Proprietes elastiques
** E nu RhoR
*ELASTIC, TYPE=ISOTROPIC, dependencies=1
0.1134E+9,0.28, ,0.47
0.3028E+9,0.28, ,0.56
0.5453E+9,0.28, ,0.63
1.0146E+9,0.28, ,0.72
1.7871E+9,0.28, ,0.82
*CAP PLASTICITY
** Parametres de la courbe intrinseque
** d beta(°) R epvol0 alpha K
0.00014E+6 , 36.82 , 0.558 , 0. , 0.03 , 1.
*CAP HARDENING
** Comportement en durcissement
** P eps(vol)pl
0.00013E+6 , 0.
9.086E+6, 0.915
19.47E+6, 1.122
30.54E+6, 1.239
40.15E+6, 1.330
54.75E+6, 1.379
66.95E+6, 1.426
***USER DEFINED FIELD
***DEPVAR
**1
*DENSITY
7.85,
**

*** VARIABLES - NODES/ NODE SETS

**create a node for defining the roll
*NODE,NSET=REF
10000, 0.0409 , 0.185
**#,x,y
**

***This option assigns nodes to a node set ="name"
*NSET,NSET=BOT,GEN
1,309,7
** a,b,c
**a. First node in the set.
**b. Last node in the set.
**c. Increment in node numbers between nodes in the set.
*NSET,NSET=TOP,GEN
7, 315, 7
*NSET,NSET=BACK,GEN
309, 315, 1
*NSET,NSET=BACK2,GEN
310, 315, 1
*NSET,NSET=FRONT,GEN
1, 7, 1

*NSET,NSET=EULER
BACK, FRONT
** 2 node set labels to be assigned to this node set.
**
*** The back fo the slab
*NSET,NSET=EQN1,GEN
310, 315, 1
*** Front of the slab
*NSET,NSET=EQN2,GEN
2, 7, 1
**

*** Degres de liberte contraints

*EQUATION
2,
EQN1,1,1.0,309,1,-1.0
*EQUATION
2,
EQN2,1,1.0,1,1,-1.0

*ELSET, ELSET=EULER1, GEN
1, 221, 44
*ELSET, ELSET=EULER2, GEN
44, 264, 44
*ELSET,ELSET=TOP,GEN
221, 264, 1
*ELSET,ELSET=BOT,GEN
1, 44, 1

**The roller is rotated at a constant angular velocity of 1
revolution per
**second (6.28 rad/sec).With roll radius at .175 that yeilds a roller
surface
**speed of 1.1 m/sec. The plate is given an initial velocity in the
global
**x-direction. The initial velocity is chosen to match the x-
component
** of velocity of the roller at the point of first contact. (19.5°) cos
(x)*W
** This choice of initial velocity results in a net acceleration of
zero
** in the x-direction at the point of contact and minimizes the
initial
** impact between the plate and the roller.
** This minimizes the initial transient disturbance
*INITIAL CONDITIONS,TYPE=VELOCITY
BAR,1,1.0369
*BOUNDARY
BOT, 2, 2
*SURFACE, NAME=SURF1, REGION TYPE=SLIDING
TOP,S2
*SURFACE, NAME=EULER1, REGION TYPE=EULERIAN
EULER1,S1
*SURFACE, NAME=EULER2, REGION TYPE=EULERIAN
EULER2,S3
**

**roller definition
**arc starts at START and finishes at FIRST PAIR
**of circle elements, second pair is the center of the circle
**circle is drawn in a counterclockwise direction.
**relative rigidity of the roller is high so it is completely rigid
*SURFACE,TYPE=SEGMENTS,NAME=RIGID,FILLET
RADIUS=.001
START, 0.040900, 0.010000
CIRCL, -.134100, 0.185000 , 0.0409 , 0.185
*RIGID BODY, REFNODE=10000, ANALYTICAL SURFACE =
RIGID
**

** start of a step arguments are the same as header

62

*STEP
Powder Compaction
**
**the type of simulation - Dynamic
**Include EXPLICIT parameter to specify explicit time
integration.
**can be used to perform quasi-static analyses with complicated
**contact conditions; and allows for either automatic or fixed time
**incrementation to be used--by default
*DYNAMIC,EXPLICIT
,0.225
**the argument defines overrides default time of process.(ie .2)
**
**

**Prescribing boundary conditions at nodes
**The roller is rotated at a constant angular velocity of 1
revolution per
**second (6.28 rad/sec).With roll radius at .175.
**Boundary conditions are applied to those parts of the model
where the
** displacements are known. Such parts may be constrained to
remain fixed
** (have zero displacement) during the simulation or may have
specified,
** nonzero displacements. In either situation the constraints are
applied
** directly to the nodes of the model.
** <node number>, <first dof>, <last dof>, <magnitude of
displacement>
** 1=X; 2=Y; 3=Z;4=rot X;5=rot Y;=rot Z;
** Boundary conditions on a node are cumulative
** The node 10000 = ROLL -> set DOF# 1 through 5 to 0
*BOUNDARY
10000,1,5
**
** Set the rotation of the ROLL about Z (DOF #6) axis to velocity
V
*BOUNDARY,TYPE=VELOCITY
10000,6,6,6.2832
**
**the back is constrained only in the Y (2) direction
**DOF to constrain are 2 to 2 (=only 2)and displacement in Y
direction is 0
**review =EULERIAN
*BOUNDARY,TYPE=VELOCITY,REGION TYPE=EULERIAN
BACK2,2,2,0.0
**
**

** Mass scaling is often used for computational efficiency in
quasi-static
** analyses and in some dynamic analyses that contain a few very
small
** elements that control the stable time increment.

** Mass scaling is an alternative to increasing the loading rate.
** When using rate-dependent materials, mass scaling is
preferable
** because increasing the loading rate artificially changes the
** material properties.
*FIXED MASS SCALING, FACTOR=27000.0
**

*SURFACE INTERACTION,NAME=FRICT
*FRICTION
 0.3,
*CONTACT PAIR,INTERACTION=FRICT, CPSET=CONTACT
SURF1,RIGID
**
**

*FILE OUTPUT, NUMBER INTERVAL=10,
TIMEMARKS=YES
*EL FILE, ELSET=TOP
 PEEQ,
*NODE FILE,NSET=REF
 U,RF
*OUTPUT, FIELD,NUMBER INTERVAL=10
*ELEMENT OUTPUT
PEEQ,S
*NODE OUTPUT
U,V
*CONTACT OUTPUT, CPSET=CONTACT, VARIABLE=ALL
*OUTPUT,HISTORY,TIME INTERVAL=1.E-4
*NODE OUTPUT,NSET=REF
RF2
***---------------------
*NSET, NSET=QA_TEST_REFN
REF,
*ELSET, ELSET=QA_TEST
TOP,
*NSET, NSET=QA_TEST
BOT,
*OUTPUT, FIELD, TIME MARKS=YES, NUMBER
INTERVAL=10
*ELEMENT OUTPUT, ELSET=QA_TEST
PEEQ,
*NODE OUTPUT, NSET=QA_TEST
U,
*NODE OUTPUT, NSET=QA_TEST_REFN
RF,
*OUTPUT, HIST, FREQ=9999
*ENERGY OUTPUT, VAR=PRESELECT

*ADAPTIVE MESH,ELSET=BAR,FREQUENCY=5
*ADAPTIVE MESH CONSTRAINT
EULER,1,1,0.
BACK,2,2,0.
*ENDSTEP

63

 9.3 Johanson Model - Matlab Program
Source Code Included
CD with all source files (nip.m, nip.fig)

The program was developed on a Solaris machine.
Graphics may be different on other platforms.

Required files:
nip.m main program
nip.fig the graphical user interface for this program
SlipStickFun.m two functions representing the state of the powder
slipODE.m ODE for the powder while slip occurs
forceFactor.m force factor equation
torqueFactor.m torque factor equation
modaldlg.m help menu
modaldlg.fig help menu graphical user interface
johansonModel.jpg image of the system

Run Instructions:
All the files should be located in the same directory.
Once Matlab is up and running there are two methods of stating the program:
a) Click on File Open, choose the directory containing required files, click on

nip.m. This will open a Graphical User Interface (GUI) similar to the one in figure
9.3.

b) Type nip on the Matlab command line. If the local path is the directory
containing the required files a GUI will appear.

Once the GUI is running

64

Fig. 9.3Main User Interface

A pull-down menu contain file operations and help.

65

Fig. 9.4 Help Screen

MATLAB 6.1 SOURCE CODE

nip.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Johanson Model
%% Date May 6, 2003
%% Marcin Balicki
%% Ecole Des Mines D'Albi
%% balicki@enstimac.fr
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Description:
%% Application of Johanson Model of rolling Compaction of
powder.
%% Allows for quick analysis effects of parameter variation on
%% powder compaction
%% It provides a means of creating and altering databases of
%% powder properties and process parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Note:
%% The program was developed on a Solaris machine
%% Graphics may be different on other platforms

%%Required files:
%% nip.m This file - main program
%% nip.fig the graphical user interface for this program
%% SlipStickFun.m two functions representing the state of the
powder
%% slipODE.m ODE for the powder while slip occurs
%% forceFactor.m force factor equation
%% torqueFactor.m torque factor equation
%% modaldlg.m help menu
%% modaldlg.fig help menu graphical user interface
%% johansonModel.jpg image of the system
%%%%%%%%%
% To DO:
% Option for plotting in main GUI axes or separate figure
% Warning 'save on exit'
%%%%%%%%
%Menu Options
%The program saves and imports powder database which is saved
as a matlab file
%with '.pdb' suffix
%The program can export the database as a text file as well.
%The print command prints the user interface, some user
adjustments are required.
%%%%%%%%
%All the graphs are plotted in a new figure unless the %plot in
same figure
% button
%is selected in which case consecutive plots of the same type will
be plotted in
%one figure
%%%%%%%%
%%%%%%%%
% user input
% S=Gap size(between rolls)
% D=Diameter of Rolls
% K=Compressibility constant
% d=delta - internal friction angle of powder
% Po=initial pressure at the entrance (perpendicular to major
principal stress
% W=phi-wall (roll-powder) friction angle (user enters friction
coefficient -> tan(phi)=mu)
% v=acute angle between the tangent to the roll surface and the
direction of the major principal stress
% can be calculated using W and d
% RW=roll width
% rMin = min range value

% rMax = max range value
%%%%%%%
function varargout = nip(varargin)
% NIP Application M-file for nip.fig
% FIG = NIP launch nip GUI.
% NIP('callback_name', ...) invoke the named callback.

% Last Modified by GUIDE v2.0 07-May-2003 16:37:58

if nargin == 0 % LAUNCH GUI
 disp(' ')
 disp('---')
 disp('Powder Rolling Compaction - Johanson method')
 disp('Marcin Balicki')
 disp('Ecole des Mines d Albi - 2003')
 disp('---')
 disp(' ')

 fig = openfig(mfilename,'reuse');
 set(fig,'Tag','Main');

% Generate a structure of handles to pass to callbacks,
and store it.

handles = guihandles(fig);
guidata(fig, handles);

 %note the current DB file in use (used in saving)
 handles.LastFile='';
 %create default powder databse
 handles.PowderDB(1).Name='Lactose75';
 handles.PowderDB(1).W='0.24';
 handles.PowderDB(1).d='39';
 handles.PowderDB(1).K='7.75';
 handles.PowderDB(1).S='1';
 handles.PowderDB(1).D='130';
 handles.PowderDB(1).Po='0.06';
 handles.PowderDB(1).RW='50';
 %create default powder databse
 handles.PowderDB(2).Name='AvicelPH102';
 handles.PowderDB(2).W='0.28';
 handles.PowderDB(2).d='42';
 handles.PowderDB(2).K='4.75';
 handles.PowderDB(2).S='1';
 handles.PowderDB(2).D='130';
 handles.PowderDB(2).Po='0.06';
 handles.PowderDB(2).RW='50';
 %create default powder databse
 handles.PowderDB(3).Name='AvicelPH102L';
 handles.PowderDB(3).W='0.19';
 handles.PowderDB(3).d='42';
 handles.PowderDB(3).K='4.75';
 handles.PowderDB(3).S='1';
 handles.PowderDB(3).D='130';
 handles.PowderDB(3).Po='0.06';
 handles.PowderDB(3).RW='50';
 %create default powder databse
 handles.PowderDB(4).Name='AvicelPH101';
 handles.PowderDB(4).W='0.29';
 handles.PowderDB(4).d='45';
 handles.PowderDB(4).K='3.64';
 handles.PowderDB(4).S='1';
 handles.PowderDB(4).D='130';
 handles.PowderDB(4).Po='0.06';
 handles.PowderDB(4).RW='50';
 %load Avicel powder from the database
 LoadPowder(handles, 2);
 %Update powder list that is in the database
 UpdateList(handles);

 %Set default properties of the plot
 set(0,'DefaultLineLineWidth',3);
 set(0,'DefaultAxesLineWidth',3);
 set(0,'DefaultAxesFontSize',16)
 set(0,'DefaultTextFontSize',14)
 if nargout > 0

66

varargout{1} = fig;
end

 guidata(fig,handles); % store the changes into the guihandle
structure
elseif ischar(varargin{1}) % INVOKE NAMED SUBFUNCTION
OR CALLBACK

try
if (nargout)

[varargout{1:nargout}] =
feval(varargin{:}); % FEVAL switchyard

else
feval(varargin{:}); % FEVAL

switchyard
end

catch
disp(lasterr);

end

end

%| ABOUT CALLBACKS:
%| GUIDE automatically appends subfunction prototypes to this
file, and
%| sets objects' callback properties to call them through the
FEVAL
%| switchyard above. This comment describes that mechanism.
%|
%| Each callback subfunction declaration has the following form:
%| <SUBFUNCTION_NAME>(H, EVENTDATA, HANDLES,
VARARGIN)
%|
%| The subfunction name is composed using the object's Tag and
the
%| callback type separated by '_', e.g. 'slider2_Callback',
%| 'figure1_CloseRequestFcn', 'axis1_ButtondownFcn'.
%|
%| H is the callback object's handle (obtained using GCBO).
%|
%| EVENTDATA is empty, but reserved for future use.
%|
%| HANDLES is a structure containing handles of components in
GUI using
%| tags as fieldnames, e.g. handles.figure1, handles.slider2. This
%| structure is created at GUI startup using GUIHANDLES and
stored in
%| the figure's application data using GUIDATA. A copy of the
structure
%| is passed to each callback. You can store additional
information in
%| this structure at GUI startup, and you can change the structure
%| during callbacks. Call guidata(h, handles) after changing your
%| copy to replace the stored original so that subsequent callbacks
see
%| the updates. Type "help guihandles" and "help guidata" for
more
%| information.
%|
%| VARARGIN contains any extra arguments you have passed to
the
%| callback. Specify the extra arguments by editing the callback
%| property in the inspector. By default, GUIDE sets the property
to:
%| <MFILENAME>('<SUBFUNCTION_NAME>', gcbo, [],
guidata(gcbo))
%| Add any extra arguments after the last argument, before the
final
%| closing parenthesis.

% --
%most of the following just check if the user input is correct

% --
function varargout = rMin_Callback(h, eventdata, handles,
varargin)
user_entry = str2double(get(h,'string'));
if isnan(user_entry)
 errordlg('You must enter a numeric value','Bad Input','modal')
end
% --
function varargout = rMax_Callback(h, eventdata, handles,
varargin)

user_entry = str2double(get(h,'string'));
if isnan(user_entry)
 errordlg('You must enter a numeric value','Bad Input','modal')
end
% --
function varargout = varS_Callback(h, eventdata, handles,
varargin)
user_entry = str2double(get(h,'string'));
if isnan(user_entry)
 errordlg('You must enter a numeric value','Bad Input','modal')
end
% --
function varargout = varD_Callback(h, eventdata, handles,
varargin)
user_entry = str2double(get(h,'string'));
if isnan(user_entry)
 errordlg('You must enter a numeric value','Bad Input','modal')
end
% --
function varargout = varK_Callback(h, eventdata, handles,
varargin)
user_entry = str2double(get(h,'string'));
if isnan(user_entry)
 errordlg('You must enter a numeric value','Bad Input','modal')
end
% --
function varargout = vard_Callback(h, eventdata, handles,
varargin)
user_entry = str2double(get(h,'string'));
if isnan(user_entry)
 errordlg('You must enter a numeric value','Bad Input','modal')
end
% --
function varargout = varPo_Callback(h, eventdata, handles,
varargin)
user_entry = str2double(get(h,'string'));
if isnan(user_entry)
 errordlg('You must enter a numeric value','Bad Input','modal')
end
% --
function varargout = varW_Callback(h, eventdata, handles,
varargin)
user_entry = str2double(get(h,'string'));
if isnan(user_entry)
 errordlg('You must enter a numeric value','Bad Input','modal')
end
% --
function varargout = varRW_Callback(h, eventdata, handles,
varargin)
user_entry = str2double(get(h,'string'));
if isnan(user_entry)
 errordlg('You must enter a numeric value','Bad Input','modal')
end
% --
function varargout = PopMenu_Callback(h, eventdata, handles,
varargin)
%change the required variable visibility
updateVariableVisibility(handles)

% --
function varargout = CheckPlot_Callback(h, eventdata, handles,
varargin)

67

%Displays the Plot On Same Axes status
if get(h,'Value')==1
 set(h,'String', 'Plot On Same Axes - ON');
 set(h,'BackgroundColor', [0.38,0.75,0.92]);
else
 set(h,'String', 'Plot On Same Axes - OFF');
 set(h,'BackgroundColor', [0.70,0.70,0.70]);
end

% --
function fig=newFigure(handles,figName)
%returns the handle to the figure used for plotting
%function opens a new figure for the plot
%can also be made to use the axes of the gui
%by checking the state of a button
%but this would not allow editing of graphs

%if no figures exist create one
if get(0,'Children')== 0;
 fig=figure('name',figName);
%but if they exist and plot in same figure is off
%create a new figure with the name passed in to the function
elseif get(handles.CheckPlot,'Value') == 0;
 fig=figure('name',figName);
 hold off %shut off same axes plotting
%If figure exist and the plot should be on same axes
else
 %get all the figures with figName
 [flag,figs] = figflag(figName);
 %if none then create one
 if flag==0;
 fig=figure('name',figName);
 %if they exist then make one of them the current one
 else
 fig=figs(size(figs,2)); %get the last figure that matches the
figName
 hold on %and force it to plot on the same axes.
 end
end

% --
function updateVariableVisibility(handles)
% Determine the current choice and change the input fields
visibility
% so the user can only enter the required fields
%pop_Names = get(handles.PopMenu,'Value') %returns all
choices
%returns the number of the choice (first position = 1)
%set all to off
%W is the friciton coefficient
set([handles.varW,
 handles.varS,
 handles.varD,
 handles.varK,
 handles.vard,
 handles.varPo,
 handles.varRW],'Visible', 'off');

 set(handles.rUnit,'String','');
 set(handles.rVar,'String','');
 set(handles.rMin,'String','0');
 set(handles.rMax,'String','100');

pop_Selected = get(handles.PopMenu,'Value');
switch pop_Selected
 case 1
 %nothing selected turn all on
 set([handles.varW,
 handles.varS,
 handles.varD,
 handles.varK,
 handles.vard,
 handles.varPo,

 handles.varRW],'Visible', 'on');
 set(handles.rUnit,'String','');
 set(handles.rVar,'String','');
 set(handles.rMin,'String','0');
 set(handles.rMax,'String','100');

 case 2
 %nipAngle
 set([handles.varW,
 handles.varS,
 handles.varD,
 handles.varK,
 handles.vard],'Visible', 'on');
 set(handles.rUnit,'String','Deg');
 set(handles.rVar,'String','Angular Position');
 set(handles.rMin,'String','0');
 set(handles.rMax,'String','60');
 case 3
 % Nip Angle Vs Internal Friction Angle
 set([handles.varW,
 handles.varS,
 handles.varD,
 handles.varK],'Visible', 'on');
 set(handles.rUnit,'String','Deg');
 set(handles.rVar,'String','Internal Friction Angle');
 set(handles.rMin,'String','20');
 set(handles.rMax,'String','70');
 case 4
 % Nip Angle Vs Wall Friction
 set([handles.varS,
 handles.varD,
 handles.varK,
 handles.vard],'Visible', 'on');
 set(handles.rUnit,'String','');
 set(handles.rVar,'String','Friction Coefficient');
 set(handles.rMin,'String','0.1');
 set(handles.rMax,'String','0.8');
 case 5
 % Nip Angle Vs Compressibility
 set([handles.varW,
 handles.varS,
 handles.varD,
 handles.vard],'Visible', 'on');
 set(handles.rUnit,'String','');
 set(handles.rVar,'String','Compressibility (K)');
 set(handles.rMin,'String','1');
 set(handles.rMax,'String','12');
 case 6
 % Nip Angle Vs Roll Gap
 set([handles.varW,
 handles.varD,
 handles.varK,
 handles.vard],'Visible', 'on');
 set(handles.rUnit,'String','mm');
 set(handles.rVar,'String','Roll Gap');
 set(handles.rMin,'String','0.4');
 set(handles.rMax,'String','2.5');
 case 7
 % Pressure Distribution in Nip Region
 set([handles.varW,
 handles.varS,
 handles.varD,
 handles.varK,
 handles.vard,
 handles.varPo],'Visible', 'on');
 set(handles.rUnit,'String','Deg');
 set(handles.rVar,'String','Angular Postition');
 set(handles.rMin,'String','0');
 set(handles.rMax,'String','10');
 case 8
 % Maximum Pressure Vs Nip Angle
 set([handles.varW,
 handles.varS,

68

 handles.varD,
 handles.varK,
 handles.vard,
 handles.varPo],'Visible', 'on');
 set(handles.rUnit,'String','Deg');
 set(handles.rVar,'String','Nip Angle');
 set(handles.rMin,'String','7');
 set(handles.rMax,'String','12');
 case 9
 % Maximum Pressure Vs Po
 set([handles.varW,
 handles.varS,
 handles.varD,
 handles.varK,
 handles.vard],'Visible', 'on');
 set(handles.rUnit,'String','MPa');
 set(handles.rVar,'String','Feed Pressure');
 set(handles.rMin,'String','0');
 set(handles.rMax,'String','2');
 case 10
 % Maximum Pressure Vs Internal Friction Angle
 set([handles.varW,
 handles.varS,
 handles.varD,
 handles.varK,
 handles.varPo],'Visible', 'on');
 set(handles.rUnit,'String','Deg');
 set(handles.rVar,'String','Internal Friction Angle');
 set(handles.rMin,'String','10');
 set(handles.rMax,'String','60');
 case 11
 % Maximum Pressure Vs Wall Friction
 set([handles.varS,
 handles.varD,
 handles.varK,
 handles.vard,
 handles.varPo],'Visible', 'on');
 set(handles.rUnit,'String','');
 set(handles.rVar,'String','Friction Coefficient');
 set(handles.rMin,'String','0.1');
 set(handles.rMax,'String','0.8');
 case 12
 % Maximum Pressure Vs Roll Gap
 set([handles.varW,
 handles.varD,
 handles.varK,
 handles.vard,
 handles.varPo],'Visible', 'on');
 set(handles.rUnit,'String','mm');
 set(handles.rVar,'String','Roll Gap');
 set(handles.rMin,'String','0.4');
 set(handles.rMax,'String','2.5');
 case 13
 % Maximum Pressure Vs Compressibility
 set([handles.varW,
 handles.varS,
 handles.varD,
 handles.vard,
 handles.varPo],'Visible', 'on');
 set(handles.rUnit,'String','');
 set(handles.rVar,'String','Compressibility (K)');
 set(handles.rMin,'String','1');
 set(handles.rMax,'String','12');
 case 14
 % Roll Force Vs Roll Gap
 set([handles.varW,
 handles.varD,
 handles.varK,
 handles.vard,
 handles.varPo,
 handles.varRW],'Visible', 'on');
 set(handles.rUnit,'String','mm');
 set(handles.rVar,'String','Roll Gap');

 set(handles.rMin,'String','0.4');
 set(handles.rMax,'String','2.5');
 case 15
 % Roll Torque Vs RollGap
 set([handles.varW,
 handles.varD,
 handles.varK,
 handles.vard,
 handles.varPo,
 handles.varRW],'Visible', 'on');
 set(handles.rUnit,'String','mm');
 set(handles.rVar,'String','Roll Gap');
 set(handles.rMin,'String','0.4');
 set(handles.rMax,'String','2.5');
 otherwise
 disp('Unknown method.')
end

% --
function varargout = CalcButton_Callback(h, eventdata, handles,
varargin)
%runs the chosen ploting function
%returns the number of the choice (first position = 1)
pop_Selected = get(handles.PopMenu,'Value');
%After the calculate button was pressed the pop menu value is
retrieved
%and appropriate function is called
switch pop_Selected
 case 1
 disp('CHOOSE PLOT')
 case 2
 NipAngle(handles)
 case 3
 NipAngleVsInternalFrictionAngle(handles)
 case 4
 NipAngleVsWallFriction(handles)
 case 5
 NipAngleVsCompressibility(handles)
 case 6
 NipAngleVsRollGap(handles)
 case 7
 PressureDistribution(handles)
 case 8
 MaximumPressureVsNipAngle(handles)
 case 9
 MaximumPressureVsPo(handles)
 case 10
 MaximumPressureVsInternalfFrictionAngle(handles)
 case 11
 MaximumPressureVsWallFriction(handles)
 case 12
 MaximumPressureVsRollGap(handles)
 case 13
 MaximumPressureVsCompressibility(handles)
 case 14
 RollForceVsRollGap(handles)
 case 15
 RollTorqueVsRollGap(handles)
 otherwise
 disp('Unknown method.')
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Johanson Model
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Nip Angle
% Nip Angle Vs Internal Friction Angle
% Nip Angle Vs Wall Friction
% Nip Angle Vs Compressibility
% Nip Angle Vs Roll Gap
% Pressure Distribution in Nip Region
% Maximum Pressure Vs Nip Angle
% Maximum Pressure Vs Po

69

% Maximum Pressure Vs Internal Friction Angle
% Maximum Pressure Vs Wall Friction
% Maximum Pressure Vs Roll Gap
% Maximum Pressure Vs Compressibility
% Roll Force VsRollGap
% Roll Torque VsRollGap

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Extracts user input from the gui
%getUserVarInput
%all variables are global
function [] = getUserVarInput(handles)
%set global variables used in functions.
global d2r r2d D S W d K v u RW Po rMin rMax
%get all the variables
%angle variables are converted to radiants
d2r=pi/180; % conversion factor degrees into radiants
r2d=180/pi; % conversion factor radiants into degrees

%%%%%%%%
% S=Gap size(between rolls)
% D=Diameter of Rolls
% K=Compressibility constant
% d=delta - internal friction angle of powder
% Po=initial pressure at the entrance (perpendicular to major
principal stress
% W=phi - wall (roll-powder) friction angle (attained from friction
coefficient tan(phi)=mu)
% v=cute angle between the tangent to the roll surface and the
direction of the major principal stress
% can be calculated using W and d
% RW=roll width
% rMin = min range value
% rMax = max range value
%%%%%%%
S = str2double(get(handles.varS,'String'));
D = str2double(get(handles.varD,'String'));
K = str2double(get(handles.varK,'String'));
d = str2double(get(handles.vard,'String'))*d2r;
Po = str2double(get(handles.varPo,'String'));
RW=str2double(get(handles.varRW,'String')); %Roll
width

u=(pi/4)-(d/2);
W=str2double(get(handles.varW,'String'));
%w at this moment is the fricition coefficient
%take atan to get the wall friction angle in radiants
W=atan(W);
%calculate v which is used all equations
v=(pi-asin(sin(W)/sin(d)) -W)/2;
rMin = str2double(get(handles.rMin,'String'));
rMax = str2double(get(handles.rMax,'String'));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function a=getAplha(handles)
%Solve for alpha
%calls fsolve function which uses two functions(slip, stick)
%contained in SlipStickFun.m and solves for the point of their
intersection
%returns alpha in radiants
%handles is passed to the function for formality.
%all variables are global
%set global variables used in functions.
global d2r r2d D S W d K v u RW Po rMin rMax
%call fsolve mysystem is the function containing the two
equations.
InitialGuess = [.1;.1];
Options = optimset('Display','off');
XY = fsolve(@SlipStickFun, InitialGuess, Options);

%XY returns the answer, the x component is the angle alpha
a=XY(1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function NipAngle(handles)
%NIP ANGLE
%plots slip and stick pressure gradients
%point of intersection is the nip angle
disp('NipAngle')
%set global variables used in functions outside of this file.
global d2r r2d D S d K v W u Po RW rMin rMax
%get all the variables
getUserVarInput(handles);
a=getAplha(handles)
%value of y when x = a
ay=(K.*(2.*cos(a)-1-S/D).*tan(a))./((D/2).*((1+S/D-
cos(a)).*cos(a)));
% x represents theta
x=linspace(rMin,rMax*d2r);
%slip gradient equation
fn1=(4.*((pi/2)-x-v).*tan(d))./(D/2.*(1+S/D-
cos(x)).*(cot(((x+v+(pi/2))/2)-u)-cot(((x+v+pi/2)/2)+u)));
%stick gradient equation
fn2=(K.*(2.*cos(x)-1-S/D).*tan(x))./((D/2).*((1+S/D-
cos(x)).*cos(x)));
%straight line
z=0;
%get a new or correct figure for plotting
figure(newFigure(handles,'NIP ANGLE'));
plot(x*r2d,fn1,x*r2d,fn2,'k--',x*r2d,z,'k--',a*r2d,ay,'ro');
title('Nip Angle (\alpha)');
xlabel('Angular Position [Deg]'), ylabel('Pressure Gradient');
legend('SLIP','NO SLIP');
legend('boxoff')
grid off;

%prints variables used on the graph:
TPosX=(max(x)*r2d*0.6); % returns the maximum value in x
direction * factor
TPosY=max(fn1)*0.8; % returns the maximum value in y
direction * factor
TSp=TPosY*0.09;
text(a*r2d+(TPosX*0.05),ay+TSp,0,['\alpha = ',num2str(a*r2d),'
Deg']);

text(TPosX,TPosY,0, ['S= ',num2str(S),' mm']);
text(TPosX,TPosY-TSp,0, ['D= ',num2str(D),' mm']);
text(TPosX,TPosY-TSp*2,0, ['K= ',num2str(K)]);
text(TPosX,TPosY-TSp*3,0, ['\delta= ',num2str(d*r2d),' Deg']);
text(TPosX,TPosY-TSp*4,0, ['\mu= ',num2str(tan(W))]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function NipAngleVsInternalFrictionAngle(handles)
%Nip Angle Vs Internal Friction Angle
%
disp('NipAngleVsInternalFrictionAngle')
global d2r r2d D S d K v W u Po RW rMin rMax
%get all the variables
getUserVarInput(handles);
i=1;
for M=rMin:1:rMax
 d=M*d2r; %get internal friction angle
 u=(pi/4)-(d/2); %calculate a new u
 %calculate v which is used all equations
 v=(pi-asin(sin(W)/sin(d)) -W)/2;
 N(i,1)=M;
 N(i,2)=getAplha(handles)*r2d; %get alpha and turn into degrees
for plot
 i=i+1;
end

figure(newFigure(handles,'Nip Angle Vs Internal Friction Angle'));

70

plotA=plot(N(:,1),N(:,2));

title('Nip Angle Vs Internal Friction Angle');
xlabel('Internal Friction Angle [Deg]');
ylabel('Nip Angle(\alpha) [Deg]');
grid off;
xData = get(plotA,'XData'); % Get the plotted data
yData = get(plotA,'YData');
% returns the maximum value in x direction
TPosX=(min(xData)) + (max(xData)-min(xData))*0.2;
TPosY=(max(yData))*0.9; % returns the maximum value in
y direction
TSp=TPosY*0.07;
text(TPosX,TPosY,0, ['S= ',num2str(S),' mm']);
text(TPosX,TPosY-TSp,0, ['D= ',num2str(D),' mm']);
text(TPosX,TPosY-TSp*2,0, ['K= ',num2str(K)]);
text(TPosX,TPosY-TSp*3,0, ['\mu= ',num2str(tan(W))]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function NipAngleVsWallFriction(handles)
%Nip Angle Vs Wall Friction Angle
%
%Phi=W=wall friction angle user inputs the friction coefficient
% --
disp('NipAngleVsWallFriction')
global d2r r2d D S d K v W u Po RW rMin rMax
%get all the variables
getUserVarInput(handles);
%convert ranges into wall friction angle in radiants
rMin=atan(rMin)
rMax=atan(rMax)
%number of iterations
step=(rMax-rMin)/40;
i=1;
for M=rMin:step:rMax
 W=M;
 v=(pi-asin(sin(W)/sin(d)) -W)/2;
 N(i,1)=tan(M); %convert wall friction angle to friction
coefficient
 N(i,2)=getAplha(handles)*r2d; %get alpha and turn into degrees
for plot
 i=i+1
end
figure(newFigure(handles,'Nip Angle Vs Wall Friction'));
plotA=plot(N(:,1),N(:,2));
title('Nip Angle Vs Wall Friction');
xlabel('Wall Friction Coefficient (\mu)');
ylabel('Nip Angle (\alpha) [Deg]');

xData = get(plotA,'XData'); % Get the plotted data
yData = get(plotA,'YData');
TPosX=(max(xData))*0.2; % returns the maximum value in
x direction
TPosY=(max(yData))*0.9; % returns the maximum value in
y direction
TSp=TPosY*0.07;
%print the variables unique to this plot
text(TPosX,TPosY,0, ['S= ',num2str(S), ' mm']);
text(TPosX,TPosY-TSp,0, ['D= ',num2str(D), ' mm']);
text(TPosX,TPosY-TSp*2,0, ['K= ',num2str(K)]);
text(TPosX,TPosY-TSp*3,0, ['\delta= ',num2str(d*r2d), ' Deg']);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function NipAngleVsCompressibility(handles)
%Nip Angle Vs Compressibility
%
% --

disp('NipAngleVsCompressibility')
global d2r r2d D S d K v W u Po RW rMin rMax
%get all the variables

getUserVarInput(handles);

step=(rMax-rMin)/20;
i=1;
for M=rMin:step:rMax;
 K=M;
 N(i,1)=K;
 N(i,2)=getAplha(handles)*r2d; %get alpha and turn into degrees
for plot
 i=i+1
end
figure(newFigure(handles,'Nip Angle Vs Compressibility'));

plotA=plot(N(:,1),N(:,2));
title('Nip Angle Vs Compressibility');
xlabel('K - Copmressibility ');
ylabel('Nip Angle (\alpha) [Deg]');

xData = get(plotA,'XData'); % Get the plotted data
yData = get(plotA,'YData');
TPosX=(max(xData))*0.8; % returns the maximum value in
x direction
TPosY=(max(yData))*0.9; % returns the maximum value in
y direction
TSp=TPosY*0.07;
text(TPosX,TPosY,0, ['S= ',num2str(S), ' mm']);
text(TPosX,TPosY-TSp,0, ['D= ',num2str(D), ' mm']);
text(TPosX,TPosY-TSp*2,0, ['\delta= ',num2str(d*r2d),' Deg']);
text(TPosX,TPosY-TSp*3,0, ['\mu= ',num2str(tan(W))]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function NipAngleVsRollGap(handles)
% Nip Angle Vs Roll Gap
%
% --
disp('NipAngleVsRollGap')
global d2r r2d D S d K v W u Po RW rMin rMax
%get all the variables
getUserVarInput(handles);
step=(rMax-rMin)/20;
i=1
for M=rMin:step:rMax
 S=M;
 N(i,1)=S;
 N(i,2)=getAplha(handles)*r2d; %get alpha and turn into degrees
for plot
 i=i+1
end
figure(newFigure(handles,'Nip Angle Vs Roll Gap'));
plotA=plot(N(:,1),N(:,2));
title('Nip Angle Vs Roll Gap');
xlabel('Roll Gap [mm]');
ylabel('Nip Angle (\alpha) [Deg]');

xData = get(plotA,'XData'); % Get the plotted data
yData = get(plotA,'YData');
TPosX=(max(xData))*0.2; % returns the maximum value in
x direction
TPosY=(min(yData)) + (max(yData)-min(yData))*0.9; %returns
the maximum value in y direction
TSp=(max(yData)-min(yData))*0.07;
text(TPosX,TPosY,0, ['D= ',num2str(D),' mm']);
text(TPosX,TPosY-TSp,0, ['K= ',num2str(K)]);
text(TPosX,TPosY-TSp*2,0, ['\delta= ',num2str(d*r2d),' Deg']);
text(TPosX,TPosY-TSp*3,0, ['\mu= ',num2str(tan(W))]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function PressureDistribution(handles)
%PRESSURE DISTRIBUTION
%Stress vs Angular position
%Assumption - normal stress is equal to pressure excerted on the

71

powder by roll
% --
disp('PressureVsAngularPosition')
global d2r r2d D S d K v W u Po RW rMin rMax
%get all the variables
getUserVarInput(handles);
%get the nip angle
a=getAplha(handles);

%%%%%
%Pressure distribution
%Solve the differential equation of powder behavior in SLIP to get
pressure at alpha

%initial condition - feed stress (pressure) at x0
so=[Po/(1-sin(d))];
%point of application of feed pressure
x0=(pi/2)-v;
%variable used in ODE solver, the limits of analysis
%first item (limit) is the initial condition point, the second is the
limit-0
xspan=[x0,0];
%Runga-Kutta ODE solver
sol=ode45(@slipODE,xspan,so);
% extract the stress at nip angle alpha
sa = deval(sol,a);

%Plot the pressure distribution equation
%ranges are in degrees so convert
x=linspace(rMin*d2r,rMax*d2r);
%pressure distirbution (No slip) equation with initial condition at
angle a
s=sa.*((1+S/D-cos(a).*cos(a))./(1+S/D-cos(x).*cos(x))).^K;

figure(newFigure(handles,'Pressure Distribution'));
plotA=plot(x*r2d,s);
title('Pressure Distribution in Nip Region');
xlabel('Angular Position [Deg]');
ylabel('Pressure [MPa]');

xData = get(plotA,'XData'); % Get the plotted data
yData = get(plotA,'YData');
TPosX=(max(xData))*0.7; % returns the maximum value in
x direction
TPosY=(max(yData))*0.9; % returns the maximum value in
y direction
TSp=TPosY*0.07;

text(TPosX,TPosY,0, ['S= ',num2str(S), ' mm']);
text(TPosX,TPosY-TSp,0, ['D= ',num2str(D), ' mm']);
text(TPosX,TPosY-TSp*2,0, ['Po= ',num2str(Po), ' Mpa']);
text(TPosX,TPosY-TSp*3,0, ['K= ',num2str(K)]);
text(TPosX,TPosY-TSp*4,0, ['\delta= ',num2str(d*r2d), ' Deg']);
text(TPosX,TPosY-TSp*5,0, ['\mu= ',num2str(tan(W))]);
text(TPosX,TPosY-TSp*6,0, ['\alpha= ',num2str(a*r2d), ' Deg']);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function MaximumPressureVsNipAngle(handles)
%
%EFFECTS OF NIP ANGLE ON PRESSURE AT ANGULAR
DISPLACEMENT 0
%Pressure vs Nip Angle
% --
disp('PressureVsNipAngle')
global d2r r2d D S d K v W u Po RW rMin rMax
%get all the variables
getUserVarInput(handles);

%%%%%
%Solve the differential equation in slip region
%For each alpha
%From the ODE solutions get pressure at each alpha

%Using the Initial condition find what is the value
%of sigma at angular position 0, then plot

%initial condition - feed stress (pressure) at x0
so=[Po/(1-sin(d))];
%point of application of feed pressure
x0=(pi/2)-v;
%variable used in ODE solver, the limits of analysis
%first item (limit) is the initial condition point, the second is the
limit-0
xspan=[x0,0];
%Runga-Kutta ODE solver
sol=ode45(@slipODE,xspan,so);
% extract the stress at nip angle alpha
sa = deval(sol,a);

%create an array that will hold alpha
%rmin and max are in deg at this moment
Alpha=linspace(rMin,rMax);
%for all the elements in Alpha get s
%at position 0
x=0;
for M=1:1:(size(Alpha,2))
 N(M,1)=Alpha(M);
 a=Alpha(M)*d2r;
 sa = deval(sol,a); %pressure at alpha from the slip equation
 %the pressure at position 0 = maximum pressure.
 N(M,2)=sa.*((1+S/D-cos(a).*cos(a))./(1+S/D-
cos(x).*cos(x))).^K;
end
figure(newFigure(handles,'Maximum Pressure Vs Nip Angle'));
plotA=plot(N(:,1),N(:,2));
title('Maximum Pressure Vs Nip Angle');
xlabel('Nip Angle(\alpha) [Deg]');
ylabel('Maximum Pressure [MPa]');
%grid;
xData = get(plotA,'XData'); % Get the plotted data
yData = get(plotA,'YData');
TPosX=rMin+(rMax-rMin)*0.2; % returns the maximum
value in x direction
TPosY=(max(yData))*0.8; % returns the maximum value in
y direction
TSp=TPosY*.07;

text(TPosX,TPosY,0, ['S= ',num2str(S), ' mm']);
text(TPosX,TPosY-TSp,0, ['D= ',num2str(D), ' mm']);
text(TPosX,TPosY-TSp*2,0, ['Po= ',num2str(Po), ' Mpa']);
text(TPosX,TPosY-TSp*3,0, ['K= ',num2str(K)]);
text(TPosX,TPosY-TSp*5,0, ['\mu= ',num2str(tan(W))]);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function MaximumPressureVsPo(handles)
%EFFECTS OF ENTRY PRESSURE ON PRESSURE AT
DISPLACEMENT 0
%Pressure0vsPo
%opens a new plot window
% ---

disp('PressureVsPo')
global d2r r2d D S d K v W u Po RW rMin rMax
%get all the variables
getUserVarInput(handles);

%get the nip angle
a=getAplha(handles);

%%%%%
%for each Po calculate a new s!
%calculate so

72

%Solve the differential equation in slip region
%For each alpha
%From the ODE solutions get pressure at each alpha
%Using the Initial condition find what is the value
%of sigma at angular position 0, then plot

%point of application of feed pressure
x0=(pi/2)-v;
%first item (limit) is the initial condition point, the second is the
limit-0
xspan=[x0,0];

NumOfEl=100;
%create an array that will hold the different Po values
PoValues=linspace(rMin,rMax,NumOfEl);
%for all the elements in Alpha get s at position 0
x=0;
for M=1:1:(size(PoValues,2));
 %initial condition - feed stress (pressure) at x0
 so=[PoValues(M)/(1-sin(d))];
 %Runga-Kutta ODE solver
 sol=ode45(@slipODE,xspan,so);
 N(M,1)=PoValues(M);
 sa = deval(sol,a);
 N(M,2)=sa.*((1+S/D-cos(a).*cos(a))./(1+S/D-
cos(x).*cos(x))).^K;
end
figure(newFigure(handles,'Maximum Pressure Vs Po'));
plotA=plot(N(:,1),N(:,2));
title('Maximum Pressure Vs Feed Pressure (Po)');
xlabel('Feed Pressure (Po) [MPa] ');
ylabel('Maximum Pressure [MPa]');

xData = get(plotA,'XData'); % Get the plotted data
yData = get(plotA,'YData');
TPosX=(max(xData))*0.2; % returns the maximum value in
x direction
TPosY=(max(yData))*0.8; % returns the maximum value in
y direction
TSp=TPosY*.07;

text(TPosX,TPosY,0, ['S= ',num2str(S), ' mm']);
text(TPosX,TPosY-TSp,0, ['D= ',num2str(D), ' mm']);
text(TPosX,TPosY-TSp*2,0, ['K= ',num2str(K)]);
text(TPosX,TPosY-TSp*3,0, ['\delta= ',num2str(d*r2d), ' Deg']);
text(TPosX,TPosY-TSp*4,0, ['\mu= ',num2str(tan(W))]);
text(TPosX,TPosY-TSp*5,0, ['\alpha= ',num2str(a*r2d), ' Deg']);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function MaximumPressureVsInternalfFrictionAngle(handles)
%Maximum Pressure (at Position 0) vs Internal Friction Angle
%
% ---

disp('Pressure0VsInternalfFrictionAngle')
global d2r r2d D S d K v W u Po RW rMin rMax
%get all the variables
getUserVarInput(handles);

%%%%%
%for each d calculate new alpha!
%calculate so
%Solve the differential equation in slip region
%For each alpha
%From the ODE solutions get pressure at each alpha
%Using the Initial condition find what is the value
%of sigma at angular position 0, then plot

step=(rMax-rMin)/40;
i=1;

for M=rMin:step:rMax
 d=M*d2r; %get internal friction angle in redients
 u=(pi/4)-(d/2);
 %calculate v which is used all equations
 v=(pi-asin(sin(W)/sin(d)) -W)/2;
 a=getAplha(handles); %get the nip angle
 %point of application of feed pressure
 x0=(pi/2)-v;
 %initial condition - feed stress (pressure) at x0
 so=[Po/(1-sin(d))];
 %variable used in ODE solver, the limits of analysis
 %first item (limit) is the initial condition point, the second is the
limit-0
 xspan=[x0,0];
 sol=ode45(@slipODE,xspan,so);
 % extract the stress at nip angle alpha
 sa = deval(sol,a);
 N(i,1)=M; %the internal friciton angle in degrees
 N(i,2)=sa.*((1+S/D-cos(a).*cos(a))./(1+S/D-
cos(x).*cos(x))).^K;
 i=i+1;

end
figure(newFigure(handles,'Maximum Pressure Vs Internal Fricition
Angle'));
plotA=plot(N(:,1),N(:,2));
grid off;
title('Maximum Pressure Vs Internal Fricition Angle');
xlabel('Internal Fricition Angle [Deg]');
ylabel('Maximum Pressure [MPa]');
xData = get(plotA,'XData'); % Get the plotted data
yData = get(plotA,'YData');
TPosX=(max(xData))*0.2; % returns the maximum value in
x direction
TPosY=(max(yData))*0.8 ; % returns the maximum value in
y direction
TSp=TPosY*.07;

text(TPosX,TPosY,0, ['S= ',num2str(S), ' mm']);
text(TPosX,TPosY-TSp,0, ['D= ',num2str(D), ' mm']);
text(TPosX,TPosY-TSp*2,0, ['Po= ',num2str(Po), ' MPa']);
text(TPosX,TPosY-TSp*3,0, ['K= ',num2str(K)]);
text(TPosX,TPosY-TSp*4,0, ['\mu= ',num2str(tan(W))]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function MaximumPressureVsWallFriction(handles)
%Maximum Pressure (at Position 0) vs Wall Friction Angle
% ---
disp('MaximumPressureVsWallfFriction')
global d2r r2d D S d K v W u Po RW rMin rMax
%get all the variables
getUserVarInput(handles);

%%%%%
%for each phi(W) calculate new alpha!
%calculate so
%Solve the differential equation in slip region
%For each alpha
%From the ODE solutions get pressure at each alpha
%Using the Initial condition find what is the value
%of sigma at angular position 0, then plot

%angular position
%maximum pressure is at 0
x=0;
%convert coefficient ranges into wall friction angle in radiants
rMin=atan(rMin);
rMax=atan(rMax);
step=(rMax-rMin)/40;
i=1;
so=[Po/(1-sin(d))];

73

for M=rMin:step:rMax
 W=M;
 v=(pi-asin(sin(W)/sin(d)) -W)/2;
 a=getAplha(handles);
 x0=(pi/2)-v;
 %variable used in ODE solver, the limits of analysis
 %first item (limit) is the initial condition point, the second is the
limit-0
 xspan=[x0,0];
 sol=ode45(@slipODE,xspan,so);
 % extract the stress at nip angle alpha
 sa = deval(sol,a);
 N(i,1)=tan(M); %convert wall friction angle to friction
coeffcient
 N(i,2)=sa.*((1+S/D-cos(a).*cos(a))./(1+S/D-
cos(x).*cos(x))).^K;
 i=i+1;

end
figure(newFigure(handles,'Maxiumum Pressure Vs Wall
Fricition'));
plotA=plot(N(:,1),N(:,2));
title('Maxiumum Pressure Vs Wall Fricition');
xlabel('Wall Fricition Coefficient (\mu)');
ylabel('Maxiumum Pressure [MPa]');

xData = get(plotA,'XData'); % Get the plotted data
yData = get(plotA,'YData');
TPosX=(max(xData))*0.2; % returns the maximum value in
x direction
TPosY=(max(yData))*0.8; % returns the maximum value in
y direction
TSp=TPosY*.07;

text(TPosX,TPosY,0, ['S= ',num2str(S), ' mm']);
text(TPosX,TPosY-TSp,0, ['D= ',num2str(D), ' mm']);
text(TPosX,TPosY-TSp*2,0, ['Po= ',num2str(Po), ' MPa']);
text(TPosX,TPosY-TSp*3,0, ['K= ',num2str(K)]);
text(TPosX,TPosY-TSp*4,0, ['\delta= ',num2str(d*r2d), ' Deg']);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function MaximumPressureVsRollGap(handles)
%Pressure at Position 0 vs Roll Gap
%
% ---

disp('MaxmimumPressureVsRollGap')
global d2r r2d D S d K v W u Po RW rMin rMax
%get all the variables
getUserVarInput(handles);
%initial condition
so=[Po/(1-sin(d))];

%%%%%
%for each S calculate new alpha!
%calculate so
%Solve the differential equation in slip region
%For each alpha
%From the ODE solutions get pressure at each alpha
%Using the Initial condition find what is the value
%of sigma at angular position 0, then plot
%initial condition - feed stress (pressure) at x0
so=[Po/(1-sin(d))];
%point of application of feed pressure
x0=(pi/2)-v;
%variable used in ODE solver, the limits of analysis
%first item (limit) is the initial condition point, the second is the
limit-0
xspan=[x0,0];
i=1;
%maximum pressure is at 0
x=0;

step=(rMax-rMin)/40;
for M=rMin:step:rMax
 S=M;
 a=getAplha(handles);
 %Runga-Kutta ODE solver
 sol=ode45(@slipODE,xspan,so);
 % extract the pressure at nip angle alpha
 sa = deval(sol,a);
 N(i,1)=M;
 N(i,2)=sa.*((1+S/D-cos(a).*cos(a))./(1+S/D-
cos(x).*cos(x))).^K;
 i=i+1;

end
figure(newFigure(handles,'Maximum Pressure Vs Roll Gap'));
%Fig=figure;
%set(Fig,'Name','Pressure at Position 0 Vs Roll Gap')
plotA=plot(N(:,1),N(:,2));
title('Maximum Pressure Vs Roll Gap');
xlabel('Roll Gap [mm]');
ylabel('Maximum Pressure [MPa]');
%grid;

xData = get(plotA,'XData'); % Get the plotted data
yData = get(plotA,'YData');
TPosX=(max(xData))*0.6; % returns the maximum value in
x direction
TPosY=(max(yData))*0.8; % returns the maximum value in
y direction
TSp=TPosY*.07;

text(TPosX,TPosY-TSp,0, ['D= ',num2str(D), ' mm']);
text(TPosX,TPosY-TSp*2,0, ['Po= ',num2str(Po), ' MPa']);
text(TPosX,TPosY-TSp*3,0, ['K= ',num2str(K)]);
text(TPosX,TPosY-TSp*4,0, ['\delta= ',num2str(d*r2d), ' Deg']);
text(TPosX,TPosY-TSp*5,0, ['\mu= ',num2str(tan(W))]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function MaximumPressureVsCompressibility(handles)
%Maximum Pressure at Position 0 vs Roll Diameter
%
% ---

global d2r r2d D S d K v W u Po RW rMin rMax
%get all the variables
getUserVarInput(handles);
%intial condition
so=[Po/(1-sin(d))];
%%%%%
%for each S calculate new alpha!
%calculate so
%Solve the differential equation in slip region
%For each alpha
%From the ODE solutions get pressure at each alpha
%Using the Initial condition find what is the value
%of sigma at angular position 0, then plot

%initial condition - feed stress (pressure) at x0
so=[Po/(1-sin(d))];
%point of application of feed pressure
x0=(pi/2)-v;
%variable used in ODE solver, the limits of analysis
%first item (limit) is the initial condition point, the second is the
limit-0
xspan=[x0,0];

i=1;
%maximum pressure is at 0
x=0;
step=(rMax-rMin)/20;
for M=rMin:step:rMax
 K=M;

74

 a=getAplha(handles);
 %Runga-Kutta ODE solver
 sol=ode45(@slipODE,xspan,so);
 % extract the pressure at nip angle alpha
 sa = deval(sol,a);
 N(i,1)=K;
 N(i,2)=sa.*((1+S/D-cos(a).*cos(a))./(1+S/D-
cos(x).*cos(x))).^K;
 i=i+1
end
figure(newFigure(handles,'Maximum Pressure Vs
Compressibility'));

plotA=plot(N(:,1),N(:,2));
title('Maximum Pressure Vs Compressibility');
xlabel('Compressibility (K)');
ylabel('Maximum Pressure [MPa]');

xData = get(plotA,'XData'); % Get the plotted data
yData = get(plotA,'YData');
TPosX=(max(xData))*0.2; % returns the maximum value in
x direction
TPosY=(max(yData))*0.8; % returns the maximum value in
y direction
TSp=TPosY*.07;

text(TPosX,TPosY-TSp,0, ['S= ',num2str(S), ' mm']);
text(TPosX,TPosY-TSp*2,0, ['D= ',num2str(D), ' mm']);
text(TPosX,TPosY-TSp*3,0, ['Po= ',num2str(Po), ' MPa']);
text(TPosX,TPosY-TSp*4,0, ['\delta= ',num2str(d*r2d),' Deg']);
text(TPosX,TPosY-TSp*5,0, ['\mu= ',num2str(tan(W))]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function RollForceVsRollGap(handles)
%ROLL FORCE
%
% ---
disp('RollForce')
global d2r r2d D S d K v W u Po RW rMin rMax
%get all the variables
getUserVarInput(handles);

%Solve for Maximum pressure-Pm which occurs at position 0
%-same as other maximum pressures
%integrate the force factor equation from 0 to alpha
%evaluate the Roll force equation
%plot it versus roll gap

%initial condition - feed stress (pressure) at x0
so=[Po/(1-sin(d))];
%point of application of feed pressure
x0=(pi/2)-v;
%variable used in ODE solver, the limits of analysis
%first item (limit) is the initial condition point, the second is the
limit-0
xspan=[x0,0];

%force factor function
%f=inline('(((S/D)/((1+S/D-cos(x))*cos(x)))^K)*cos(x)')

i=1;
x=0; %location of maximum stress.
%for each gap size
%calc a
%solve ODE
%get stress at angle a
%calculate stress at position 0
step=(rMax-rMin)/20;
for M=rMin:step:rMax
 N(i,1)=M;
 S=M; %Roll Gap

 a=getAplha(handles);
 %Runga-Kutta ODE solver
 sol=ode45(@slipODE,xspan,so);
 % extract the stress at nip angle alpha
 sa = deval(sol,a);
 Pm=sa.*((1+S/D-cos(a).*cos(a))./(1+S/D-cos(x).*cos(x))).^K;
 %calculate Force factor F by integrating from 0 to a
 F=quad(@forceFactor,0,a);
 %Roll Force in newtons
 %this needs to be investigated not sure of conversion) /100
 N(i,2)=(Pm*RW*D*0.5*F)/100;
 i=i+1
end

figure(newFigure(handles,'Roll Force Vs Roll Gap'));
plotA=plot(N(:,1),N(:,2));
title('Roll Force Vs Roll Gap');
xlabel('Roll Gap [mm]');
ylabel('Roll Force [N]');

xData = get(plotA,'XData'); % Get the plotted data
yData = get(plotA,'YData');
TPosX=(max(xData))*0.6; % returns the maximum value in
x direction
TPosY=(max(yData))*0.8; % returns the maximum value in
y direction
TSp=TPosY*.07;

text(TPosX,TPosY,0, ['D= ',num2str(D),' mm']);
text(TPosX,TPosY-TSp,0, ['K= ',num2str(K)]);
text(TPosX,TPosY-TSp*2,0, ['RW= ',num2str(RW),' mm']);
text(TPosX,TPosY-TSp*3,0, ['Po= ',num2str(Po),' MPa']);
text(TPosX,TPosY-TSp*4,0, ['\delta= ',num2str(d*r2d),' Deg']);
text(TPosX,TPosY-TSp*5,0, ['\mu= ',num2str(tan(W))]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function RollTorqueVsRollGap(handles)
%ROLL TORQUE
%
% ---
disp('RollTorque')
global d2r r2d D S d K v W u Po RW rMin rMax
%get all the variables
getUserVarInput(handles);

%Solve for Maximum pressure (Pm) which occurs at position 0
%-same as other maximum pressures
%integrate the torque factor equation from 0 to alpha
%evaluate the Roll Torque equation
%plot it versus roll gap

%initial condition - feed stress (pressure) at x0
so=[Po/(1-sin(d))];
%point of application of feed pressure
x0=(pi/2)-v;
%variable used in ODE solver, the limits of analysis
%first item (limit) is the initial condition point, the second is the
limit-0
xspan=[x0,0];

x=0; %location of maximum stress.
%for each gap size
%calc a
%solve ODE
%get stress at angle a
%calculate stress at position 0
%
i=1;
step=(rMax-rMin)/20;
for M=rMin:step:rMax
 S=M; %Roll Gap
 N(i,1)=S;

75

 a=getAplha(handles);
 %Runga-Kutta ODE solverlha(handles);
 sol=ode45(@slipODE,xspan,so);
 % extract the stress at nip angle alpha
 sa = deval(sol,a);
 Pm=sa*((1+S/D-cos(a)*cos(a))/(1+S/D-cos(x)*cos(x)))^K;
 %calculate Force factor T by integrating from 0 to a
 %Torque factor T
 T=quad(@torqueFactor,0,a);
 %Roll Torque (divide by 10 e 6 to get N-Meters
 %(this needs to be investigated not sure of conversion)
 N(i,2)=Pm*RW^2*D*0.125*T/1000000;
 i=i+1
end
figure(newFigure(handles,'Roll Torque Vs Roll Gap'));

plotA=plot(N(:,1),N(:,2));
title('Roll Torque Vs Roll Gap ');
xlabel('Roll Gap [mm]');
ylabel('Roll Torque [N-M]');

xData = get(plotA,'XData'); % Get the plotted data
yData = get(plotA,'YData');
TPosX=(max(xData))*0.7; % returns the maximum value in
x direction
TPosY=(max(yData))*0.9; % returns the maximum value in
y direction
TSp=TPosY*.07;

text(TPosX,TPosY-TSp,0, ['D= ',num2str(D),' mm']);
text(TPosX,TPosY-TSp*2,0, ['Po= ',num2str(Po),' MPa']);
text(TPosX,TPosY-TSp*3,0, ['RW= ',num2str(RW),' mm']);
text(TPosX,TPosY-TSp*4,0, ['K= ',num2str(K)]);
text(TPosX,TPosY-TSp*5,0, ['\delta= ',num2str(d*r2d),' Deg']);
text(TPosX,TPosY-TSp*6,0, ['\mu= ',num2str(tan(W))]);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%The Load and save system for powder and process database
%
% --
function varargout = PowderName_Callback(h, eventdata,
handles, varargin)
set(handles.PowderLabel,'String',get(h,'string'));
% --
function varargout = PowderList_Callback(h, eventdata, handles,
varargin)
% --
function varargout = removeButton_Callback(h, eventdata,
handles, varargin)
%remove the powder currently selected
%shift the powder list to eliminate gaps
%possibility of adding warning that there are no more powders in
menu.
handles.PowderDB(get(handles.PowderList,'Value'))=[];
guidata(h,handles); % store the changes in the handles structure
%select the first item in the menu
set(handles.PowderList,'Value',1);
UpdateList(handles);
% --
function varargout = addButton_Callback(h, eventdata, handles,
varargin)
%get all data from user input
%get the number of powders add one
PowderNum=size(handles.PowderDB,2)+1;
handles.PowderDB(PowderNum).Name=get(handles.PowderName
,'String');
handles.PowderDB(PowderNum).W=get(handles.varW,'String');
handles.PowderDB(PowderNum).d=get(handles.vard,'String');
handles.PowderDB(PowderNum).K=get(handles.varK,'String');
handles.PowderDB(PowderNum).S=get(handles.varS,'String');
handles.PowderDB(PowderNum).D=get(handles.varD,'String');

handles.PowderDB(PowderNum).Po=get(handles.varPo,'String');
handles.PowderDB(PowderNum).RW=get(handles.varRW,'String')
;
guidata(h,handles); % store the changes
UpdateList(handles);

% --
function varargout = loadButton_Callback(h, eventdata, handles,
varargin)
LoadPowder(handles, get(handles.PowderList,'Value'));
% --
function varargout = File_Callback(h, eventdata, handles,
varargin)
% --
function varargout = Load_Callback(h, eventdata, handles,
varargin)
%loads/opens a database file
[filename, pathname] = uigetfile(...
 {'*.pdb', 'All PDB-Files (*.pdb)'; ...
 '*.*','All Files (*.*)'}, ...
 'Select Powder Database');
% If "Cancel" is selected then return
if isequal([filename,pathname],[0,0])
 return
% Otherwise construct the fullfilename and Check and load the
file
else
 File = fullfile(pathname,filename);
 data = load(File, '-Mat');
 flds = fieldnames(data);
 % The file is valid if the variable is called "P" and it has
 % fields called "Name" and "W" two are enough
 % Validate the MAT-file
 pass=0
 if (length(flds) == 1) & (strcmp(flds{1},'P'))

 fields = fieldnames(data.P);
 if (length(fields) == 8) &(strcmp(fields{1},'Name'))

& (strcmp(fields{2},'W'))
pass = 1;

 handles.PowderDB=data.P;
 handles.LastFIle = File;
 guidata(h,handles) %store in global structure

 end
 end
 if pass==0

errordlg('Not a valid Powder Database','Powder
Database Error')
 end% if the PDB-file is not valid, do not save the name

end

disp(['Loaded : ',File]);
UpdateList(handles);
LoadPowder(handles, 1);
% --
function varargout = Save_Callback(h, eventdata, handles,
varargin)
% Get the Tag of the menu selected either save or saveas
Tag = get(h,'Tag');
% Get the powder array
P=handles.PowderDB;
% Based on the item selected, take the appropriate action
File = handles.LastFile;
%if never saved before or save as
if (File=='') | (Tag=='SaveAs')
% Allow the user to select the file name to save to

[filename, pathname] = uiputfile(...
{'*.pdb';'*.*'}, ...
'Save as');

% If 'Cancel' was selected then return
if isequal([filename,pathname],[0,0])

return
else

76

% Construct the full path and save
File = fullfile(pathname,filename);
save(File,'P')
handles.LastFile = File;
guidata(h,handles)

end
else
 % Save P database to the default file
 save(File,'P')
end
disp(['Saved :',File]);

% --
function varargout = PrintDB_Callback(h, eventdata, handles,
varargin)
%this function allows users to preview the GUI before printing
printpreview(handles.Main)
% --
function varargout = Exit_Callback(h, eventdata, handles,
varargin)
 button = questdlg('Are you sure you want to Exit?',...
 'Closing Program?','Yes','No','Help','No');
 if strcmp(button,'Yes')
 disp('Exiting')
 delete(handles.Main)
 elseif strcmp(button,'No')
 disp('Canceled Exit operation')
 return
 elseif strcmp(button,'Help')
 disp('Sorry, no help available :(')
 end
% --
function varargout = Help_Callback(h, eventdata, handles,
varargin)
% --
function varargout = About_Callback(h, eventdata, handles,
varargin)
msgbox('Johanson Method -- Marcin Balicki -- EMAC
04/2003','About')
% --
function varargout = HelpGuide_Callback(h, eventdata, handles,
varargin)
 pos_size = get(handles.Main,'Position');
 dlg_pos = [pos_size(1)+pos_size(3)/5
pos_size(2)+pos_size(4)/5];
 user_response = modaldlg(dlg_pos);

% --
function varargout = checkPParam_Callback(h, eventdata,
handles, varargin)
% --
function LoadPowder(handles, PowderNum)
%when a selection is made load that particular powder
%check if the the user wants to load the process parameters also
P=handles.PowderDB(PowderNum);
set(handles.PowderName,'String',P.Name);
set(handles.PowderLabel,'String',P.Name);
set(handles.varW,'String', P.W);
set(handles.vard,'String', P.d);
set(handles.varK,'String', P.K);

if get(handles.checkPParam, 'Value')==1;
 set(handles.varS,'String',P.S);
 set(handles.varD,'String', P.D);
 set(handles.varRW,'String',P.RW);
 set(handles.varPo,'String',P.Po);
end
% --
function UpdateList(handles)
%check the size of the database
%take each powder name and place it in the list
P=handles.PowderDB;
%reset list

s='';
%number of powders in a list
for M=1:1:size(P,2);
 P(M).Name;
 s=strvcat(s,P(M).Name);
end
%select the first powder in the lits
set(handles.PowderList,'Value',1);
%update the display
set(handles.PowderList,'String',s);

% --
function varargout = Export_Callback(h, eventdata, handles,
varargin)
P=handles.PowderDB;
% export file format is (- is a space)
%Name-FrictionalCoefficient-InternalFrictionAngle-
Compressibility-RollGap-RollDia-Po-RollWidth
% Allow the user to select the file name to save to
[filename, pathname] = uiputfile(...

{'*.txt';'*.*'}, ...
'Save as');

% If 'Cancel' was selected then return
if isequal([filename,pathname],[0,0])

return
else

% Construct the full path and save
File = fullfile(pathname,filename);
fid = fopen(File,'w');

 for N=1:size(P,2)
 txt=[P(N).Name,' ',P(N).W,' ',P(N).d,' ',P(N).K,' ',P(N).S,'
',P(N).D,' ',P(N).Po,' ',P(N).RW];
 fprintf(fid,'%s\n',txt);
 end
 fclose(fid);
end
disp(['Exported : ',File])

SlipStickFun.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Johanson Model
%% Date May 6, 2003
%% Marcin Balicki
%% Ecole Des Mines D'Albi
%% balicki@enstimac.fr
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Description:
%% A function representing the two gradient equations
%% The first function represents the pressure gradient when the
%% powder is slipping and the second when the powder sticks
%% to the wall surface
%% This format is required for the fsolve command which accepts
%% a refrence to a function and solves for x
%% the variables are defined in the main program

function F=SlipStickFun(V)
global d2r r2dD S D W d K v u
 x=V(1); y=V(2);

F=[y-(4.*(pi/2-x-v).*tan(d))./((D/2.*(1+S/D-
cos(x))).*(cot(((x+v+pi/2)/2)-u)-cot(((x+v+pi/2)/2)+u)));
y-(K.*(2.*cos(x)-1-S/D).*tan(x))./((D/2).*((1+S/D-
cos(x)).*cos(x)))];

slipODE.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Johanson Model

77

%% Date May 6, 2003
%% Marcin Balicki
%% Ecole Des Mines D'Albi
%% balicki@enstimac.fr
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Description:
%% A function representing the differential equation of the
%% pressure gradient when the powder is slipping against
%% the wall surface. This function representation is used
%% by the numerical ODE solver
%%
%% the variables are defined in the main program

function dsdx=slipODE(s,x)
global d2r r2d S D B d K v u

dsdx=[(4.*s.*(pi/2-x-v).*tan(d))./((D/2.*(1+S/D-
cos(x))).*(cot(((x+v+pi/2)/2)-u)-cot(((x+v+pi/2)/2)+u)))];

forceFactor.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Johanson Model
%% Date May 6, 2003
%% Marcin Balicki
%% Ecole Des Mines D'Albi
%% balicki@enstimac.fr
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Description:
%% a function representing the FORCE factor
%% used in calculating the roll force
%% the variables are defined in the main program

function f=forceFactor(x)
global d2r r2d S D B d K v u

f=(((S./D)./((1+S./D-cos(x)).*cos(x))).^K).*cos(x);

torqueFactor.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Johanson Model
%% Date May 6, 2003
%% Marcin Balicki
%% Ecole Des Mines D'Albi
%% balicki@enstimac.fr
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Description:
%% a function representing the TORQUE factor
%% used in calculating the roll TORQUE
%% the variables are defined in the main program

function t=torqueFactor(x)
global d2r r2d S D B d K v u

t=(((S./D)./((1+S./D-cos(x)).*cos(x))).^K).*cos(2.*x);

modaldlg.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Johanson Model
%% Date May 6, 2003
%% Marcin Balicki
%% Ecole Des Mines D'Albi
%% balicki@enstimac.fr

%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Description:
%% The help figure code
%% It displays helpful information and is called from the help
%% pulldown menu
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Note:
%% The program was developed on a Solaris machine
%% Graphics may be different on other platforms

function answer = modaldlg(varargin)
% modaldlg Application M-file for modaldlg.fig
% answer = modaldlg return the answer.
% modaldlg('callback_name') invoke the named callback.
% modaldlg([left bottom]) locates the dialog.
% Last Modified by GUIDE v2.0 20-Jul-2000 13:59:31

error(nargchk(0,4,nargin)) % function takes only 0 or 4 argument
if nargin == 0 | isnumeric(varargin{1}) % LAUNCH GUI

 fig = openfig(mfilename,'reuse');

 % Use system color scheme for figure:
 set(fig,'Color',get(0,'defaultUicontrolBackgroundColor'));

 % Generate a structure of handles to pass to callbacks, and store
it.
 handles = guihandles(fig);
 guidata(fig, handles);
 axes(handles.figImage);
 iptsetpref('ImshowBorder','tight');
 iptsetpref('ImshowAxesVisible','off');
 iptsetpref('ImshowBorder','tight');
 imshow('johansonModel.jpg');
 %axes(handles.figImage);
 %x=linspace(0,5);
 %g=plot(sin(x),x);
 %Position figure
 if nargin == 1

 pos_size = get(fig,'Position');
 pos = varargin{1};
 if length(pos) ~= 2

 error('Input argument must be a 2-element
vector')

 end
 %take this part out to prevent the new figure from opening off
screen

 %new_pos = [pos(1) pos(2) pos_size(3) pos_size(4)];
 %set(fig,'Position',new_pos,'Visible','on')
 figure(fig)

 end

 % Wait for callbacks to run and window to be dismissed:
 uiwait(fig);

 % UIWAIT might have returned because the window was deleted
using
 % the close box - in that case, return 'cancel' as the answer, and
 % don't bother deleting the window!
 if ~ishandle(fig)

 answer = 'cancel';
 else
 % otherwise, we got here because the user pushed one
of the two buttons.

 % retrieve the latest copy of the 'handles' struct, and
return the answer.

 % Also, we need to delete the window.
 handles = guidata(fig);

 answer = handles.answer;
 delete(fig);

78

 end

elseif ischar(varargin{1}) % INVOKE NAMED SUBFUNCTION
OR CALLBACK

try
if (nargout)

[varargout{1:nargout}] =
feval(varargin{:}); % FEVAL switchyard

else
feval(varargin{:}); % FEVAL

switchyard
end

catch
disp(lasterr);

end
end

% --
% No button callback stores 'no' in the handles struct, and
% stores the modified handles struct
% (so the main function can see the change).
% --
function varargout = noButton_Callback(h, eventdata, handles,
varargin)
handles.answer = 'OK';
guidata(h, handles);
uiresume(handles.figure1);

README.TXT

ROLLING COMPACTION OF POWDERS - JOHANSON
METHOD
AUTHOR - MARCIN BALICKI
Ecole des Mines d'Albi
2003

*
The program was developed on a Solaris machine;
Graphics may be different on other platforms.

Required files:
nip.m This file - main program
nip.fig the graphical user interface for this

program
SlipStickFun.m two functions representing the state of

the powder
slipODE.m ODE for the powder while slip occurs
forceFactor.m force factor equation
torqueFactor.m torque factor equation
modaldlg.m help menu
modaldlg.fig help menu graphical user interface
johansonModel.jpg image of the system

Run Instructions:

All the files should be located in the same directory.
Once Matlab is up and running there are two methods of stating
the program:

a) Click on File Open, choose the directory containing
required files,

 click on nip.m.
 This will open a Graphical User Interface (GUI).
b) Type nip on the Matlab command line.
If the local path is the directory containing the required

files
a GUI will appear.

ENJOY!

 balick@cooper.edu

79

Author :

Marcin BALICKI

Home Address :

87 Dobbin Street
Apartment 210
Brooklyn, NY 11222
USA

School Address:

The Cooper Union
51 Astor Place
New York, NY 10003
USA

E-Mail :

conceptcatcher@hotmail.com

80

	 1 Introduction
	 2 Rolling Compaction
	 2.1 System Overview
	 2.2 Desired Solution
	 2.3 Approach

	 3 J.R. Johanson Model Study
	 3.1 Introduction
	 3.2 Pressure Distribution before the Nip Region
	 3.3 Pressure Distribution in the Nip Region
	 3.4 Determination of Nip Angle
	 3.5 Pressure Distribution Calculation
	 3.6 Roll Force and Torque Calculation
	 3.7 Johanson Model Application Using Matlab
	 3.7.1 Example Procedure
	 3.7.2 Powder Database
	 3.7.3 Printing results
	 3.7.4 Algorithm

	 3.8 System Behavior - Parameter Variation Analysis
	 3.8.1 Nip Angle
	 3.8.2 Maximum pressure

	 3.9 Conclusion
	 3.10 List of Symbols

	 4 Slab Method
	 4.1 Introduction
	 4.2 Modeling Rolling Compaction with Slab Method
	 4.3 Example Slab Method Formulation
	 4.4 Conclusions
	 4.5 List of Symbols

	 5 Finite Element Method
	 5.1 Introduction
	 5.2 Modeling Rolling Compaction with ABAQUS
	 5.3 Lagrange Approach
	 5.4 Euler-Lagrange Approach
	 5.5 Conclusion

	 6 Conclusions
	 6.1 Process Remarks
	 6.2 Powder Characterization
	 6.3 Models
	 6.4 Future Considerations

	 7 Acknowledgments
	 8 References
	 9 Appendix
	 9.1 Powder Data
	 9.2 ABAQUS Source Code
	 9.3 Johanson Model - Matlab Program

